
Programming Guide

Agilent Technologies
ESG Vector Signal Generator

This guide applies to signal generator models and associated serial number prefixes listed
below. Depending on your firmware revision, signal generator operation may vary from
descriptions in this guide.

E4438C: US4146
Part Number: E4400-90505

Printed in USA

April 2002

© Copyright 2001, 2002 Agilent Technologies, Inc.

Notice
The material contained in this document is provided “as is”, and is subject to being changed,
without notice, in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties,
either express or implied with regard to this manual and to any of the Agilent products to
which it pertains, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or
consequential damages in connection with the furnishing, use, or performance of this
document or any of the Agilent products to which it pertains. Should Agilent have a written
contract with the User and should any of the contract terms conflict with these terms, the
contract terms shall control.

Questions or Comments about our Documentation?
We welcome any questions or comments you may have about our documentation. Please send
us an E-mail at sources_manuals@am.exch.agilent.com.
ii

Contents
1. Getting Started . 1
Introduction to Remote Operation . 2

Interfaces. 3
I/O Libraries . 3
Programming Language. 4

Using GPIB . 5
1. Installing the GPIB Interface Card . 5
2. Selecting I/O Libraries for GPIB . 7
3. Setting Up the GPIB Interface. 7
4. Verifying GPIB Functionality . 8
GPIB Interface Terms. 8
GPIB Function Statements . 9

Using LAN . 14
1. Selecting I/O Libraries for LAN. 14
2. Setting Up the LAN Interface . 15
3. Verifying LAN Functionality . 16
Using VXI-11 . 18
Using Sockets LAN . 20
Using TELNET LAN . 21
Using FTP . 25

Using RS-232 . 27
1. Selecting I/O Libraries for RS-232. 27
2. Setting Up the RS-232 Interface . 28
3. Verifying RS-232 Functionality . 29
Character Format Parameters . 30
If You Have Problems . 30

2. Programming Examples. 31
Using the Programming Examples . 32

Programming Examples Development Environment . 32
Running C/C++ Programming Examples . 33

GPIB Programming Examples . 34
Before Using the Examples . 34
Interface Check using Agilent BASIC . 35
Interface Check Using NI-488.2 and C++ . 36
Interface Check using VISA and C . 37
Local Lockout Using Agilent BASIC . 38
Local Lockout Using NI-488.2 and C++ . 39
 iii

Contents
Queries Using Agilent BASIC . 41
Queries Using NI-488.2 and C++. 43
Queries Using VISA and C. 45
Generating a CW Signal Using VISA and C . 47
Generating an Externally Applied AC-Coupled FM Signal Using VISA and C 49
Generating an Internal AC-Coupled FM Signal Using VISA and C 51
Generating a Step-Swept Signal Using VISA and C . 53
Saving and Recalling States Using VISA and C . 55
Reading the Data Questionable Status Register Using VISA and C. 57
Reading the Service Request Interrupt (SRQ) Using VISA and C 60

LAN Programming Examples . 64
Before Using the Examples . 64
VXI-11 Programing . 65
Sockets LAN Programming using C . 69
Sockets LAN Programming Using PERL . 89
Sockets LAN Programming Using Java . 91

RS-232 Programming Examples . 93
Before Using the Examples . 93
Interface Check Using Agilent BASIC . 94
Interface Check Using VISA and C . 95
Queries Using Agilent BASIC . 97
Queries Using VISA and C. 98

3. Programming the Status Register System . 101
Overview. 102
Status Register Bit Values. 105
Accessing Status Register Information. 106

Determining What to Monitor . 106
Deciding How to Monitor . 107
Status Register SCPI Commands . 110

Status Byte Group . 112
Status Byte Register. 113
Service Request Enable Register . 114

Status Groups. 115
Standard Event Status Group . 116
Standard Operation Status Group. 119
iv

Contents
Baseband Operation Status Group . 122
Data Questionable Status Group. 125
Data Questionable Power Status Group . 129
Data Questionable Frequency Status Group . 132
Data Questionable Modulation Status Group. 135
Data Questionable Calibration Status Group. 138
Data Questionable BERT Status Group . 141

4. Downloading and Using Files . 145
Introduction . 146
ARB Waveform Data Downloads. 147

Bit-value and Output Power . 148
Types of Arbitrary Waveform Generator Memory . 148
Data Requirements. 150
File Structure and Memory . 150
Downloading Waveforms . 151
Playing a Downloaded Waveform . 160
Downloading E443xB Signal Generator Files . 161

User File Data Downloads. 167
Framed and Unframed Data Types . 167
Data Requirements. 168
Data Limitations. 169
Data Volatility. 169
User Files as Data Source for Framed Transmission. 170
Multiple User Files Selected as Data Sources for Different Timeslots 173
Downloading User File Data . 174
Selecting Downloaded User Files as the Transmitted Data 177
Modulating and Activating the Carrier. 178

FIR Filter Coefficient Downloads . 179
Data Requirements. 179
Data Limitations. 179
Data Volatility. 179
Downloading FIR Filter Coefficient Data . 180
Selecting a Downloaded User FIR Filter as the Active Filter 180

Downloads Directly into Pattern RAM (PRAM). 183
Data Limitations. 183
Data Volatility. 183
Downloading in List Format . 184
 v

Contents
Downloading in Block Format . 186
Modulating and Activating the Carrier. 188
Viewing the PRAM Waveform . 188

Data Transfer Troubleshooting . 189
Direct PRAM Download Problems. 189
User File Download Problems . 191
User FIR Filter Coefficient File Download Problems . 195
ARB Waveform Data Download Problems . 196
vi

1 Getting Started
1

Getting Started
Introduction to Remote Operation
Introduction to Remote Operation
ESG signal generators support the following interfaces:

• General Purpose Interface Bus (GPIB)

• Local Area Network (LAN)

• ANSI/EIA232 (RS-232) serial connection

Each of these interfaces, in combination with an I/O library and programming language, can
be used to remotely control your signal generator. Figure 1-1 uses the GPIB as an example of
the relationships between the interface, I/O libraries, programming language, and signal
generator.

Figure 1-1 Software/Hardware Layers
Chapter 12

Getting Started
Introduction to Remote Operation
Interfaces

GPIB GPIB is used extensively when a dedicated computer is available for remote
control of each instrument or system. Data transfer is fast because the GPIB
handles information in 8-bit bytes. GPIB is physically restricted by the
location and distance between the instrument/system and the computer;
cables are limited to an average length of two meters per device with a total
length of 20 meters.

LAN LAN based communication is supported by the signal generator. Data
transfer is fast as the LAN handles packets of data. The distance between a
computer and the signal generator is limited to 100 meters (10BASE-T). The
following protocols can be used to communicate with the signal generator
over the LAN:

• VMEbus Extensions for Instrumentation (VXI) as defined in VXI-11

• Sockets LAN

• Telephone Network (TELNET)

• File Transfer Protocol (FTP)

RS-232 RS-232 is a common method used to communicate with a single instrument;
its primary use is to control printers and external disk drives, and connect to
a modem. Communication over RS-232 is much slower than with GPIB or
LAN because data is sent and received one bit at a time. It also requires that
certain parameters, such as baud rate, be matched on both the computer
and signal generator.

I/O Libraries

An I/O library is a collection of functions used by a programming language to send instrument
commands. An I/O library must be installed on your computer before writing any programs to
control the signal generator.

NOTE Agilent I/O libraries support the VXI-11 standard.
Chapter 1 3

Getting Started
Introduction to Remote Operation
Programming Language

The programming language is used along with Standard Commands for Programming
Instructions (SCPI) and I/O library functions to remotely control the signal generator.
Common programming languages include:

• C/C++

• Agilent BASIC

• LabView

• Java

• Visual Basic ®

 Java is a U.S. trademark of Sun Microsystems, Inc.

 Visual Basic is a registered trademark of Microsoft Corporation
Chapter 14

Getting Started
Using GPIB
Using GPIB
The GPIB allows instruments to be connected together and controlled by a computer. The
GPIB and its associated interface operations are defined in the ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992. See the IEEE website, www.ieee.org, for
details on these standards.

1. Installing the GPIB Interface Card

A GPIB interface card must be installed in your computer. Two common GPIB interface cards
are the National Instruments (NI) PCI–GPIB and the Agilent GPIB interface cards. Follow
the GPIB interface card instructions for installing and configuring the card in your computer.
The following tables provide information on interface cards.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems

Interface
Card

Operating
System

I/O
Library

Languages Backplane
/BUS

Max I/O
(kB/sec)

Buffering

Agilent
82341C for
ISA bus
computers

Windows
95/98/NT/
2000®

Windows 95, 98, NT and 2000 are registered trademarks of Microsoft Corporation

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

ISA/EISA,
16 bit

750 Built-in

Agilent
82341D
Plug&Play
for PC

Windows
95

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

ISA/EISA,
16 bit

750 Built-in

Agilent
82350A for
PCI bus
computers

Windows
95/98/NT/
2000

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

PCI 32 bit 750 Built-in
Chapter 1 5

Getting Started
Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems

Interface
Card

Operating
System

I/O
Library

Languages Backplane
/BUS

Max I/O

National
Instrument’s
PCI-GPIB

Windows
95/98/2000/
ME/NT

VISA
NI-488.2

C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5
Mbytes/s

National
Instrument’s
PCI-GPIB+

Windows
NT

VISA
NI-488.2

C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5
Mbytes/s

NI-488.2 is a trademark of National Instruments Corporation

Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations

Interface
Card

Operating
System

I/O
Library

Languages Backplane
/BUS

Max I/O
(kB/sec)

Buffering

Agilent
E2071C

HP-UX 9.x,
HP-UX
10.01

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

EISA 750 Built-in

Agilent
E2071D

HP-UX
10.20

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

EISA 750 Built-in

Agilent
E2078A

HP-UX
10.20

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

PCI 750 Built-in
Chapter 16

Getting Started
Using GPIB
2. Selecting I/O Libraries for GPIB

The I/O libraries are included with your GPIB interface card. These libraries can also be
downloaded from the National Instruments website or the Agilent website. The following is a
discussion on these libraries.

VISA VISA is an I/O library used to develop I/O applications and instrument
drivers that comply with industry standards. It is recommended that the
VISA library be used for programming the signal generator. The NI-VISA
and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower
level I/O libraries; NI-488.2 and SICL respectively. It is best to use the
Agilent VISA library with the Agilent GPIB interface card or NI-VISA with
the NI PCI-GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can
be called from a program. However, if this method is used, executable
programs will not be portable to other hardware platforms. For example, a
program using SICL functions will not run on a computer with NI libraries
(PCI-GPIB interface card).

NI-488.2 NI-488.2 can be used without the VISA overlay. The NI-488.2 functions can
be called from a program. However, if this method is used, executable
programs will not be portable to other hardware platforms. For example, a
program using NI-488.2 functions will not run on a computer with Agilent
SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. Press Utility > GPIB/RS-232 LAN > GPIB Address.

2. Use the numeric keypad, the arrow keys, or rotate the front panel knob to set the desired
address.

The signal generator’s GPIB address is set to 19 at the factory. The acceptable range of
addresses is 0 through 30. Once initialized, the state of the GPIB address is not affected by
a signal generator preset or by a power cycle. Other instruments on the GPIB cannot use
the same address as the signal generator.

3. Press Enter.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to
Table 1-4 for cable part numbers.)

 NI-VISA is a registered trademark of National Instruments Corporation
Chapter 1 7

Getting Started
Using GPIB
4. Verifying GPIB Functionality

Use the VISA Assistant, available with the Agilent IO Library or the Getting Started Wizard
available with the National Instrument I/O Library, to verify GPIB functionality. These utility
programs allow you to communicate with the signal generator and verify its operation over
the GPIB. Refer to the Help menu available in each utility for information and instructions on
running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example
programs in Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number
configured for your PC.

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker, or controller,
depending on its current function in the network.

listener A listener is a device capable of receiving data or commands from other
instruments. Several instruments in the GPIB network can be listeners
simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB
system allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners
(including itself) for an information transfer. Only one device at a time can
be an active controller.

Table 1-4 Agilent GPIB Cables

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters
Chapter 18

Getting Started
Using GPIB
GPIB Function Statements

Function statements are the basis for GPIB programming and instrument control. These
function statements combined with SCPI provide management and data communication for the
GPIB interface and the signal generator.

This section describes functions used by different I/O libraries. Refer to the NI-488.2 Function
Reference Manual for Windows, Agilent Standard Instrument Control Library reference
manual, and Microsoft® Visual C++ 6.0 documentation for more information.

Abort Function

The Agilent BASIC function ABORT and the other listed I/O library functions terminate
listener/talker activity on the GPIB and prepare the signal generator to receive a new command
from the computer. Typically, this is an initialization command used to place the GPIB in a
known starting condition.

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate
normal execution of an asynchronous operation. The parameter list describes
the session and job id.

NI-488.2
Library The NI-488.2 library function aborts any asynchronous read, write, or

command operation that is in progress. The parameter ud is the interface or
device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the
session id. This function is supported with C/C++ on Windows 3.1 and Series
700 HP-UX.

 Microsoft is a registered trademark of Microsoft Corporation.

Table 1-5

Agilent BASIC VISA NI-488.2 Agilent SICL

10 ABORT 7 viTerminate (parameter
list)

ibstop(int ud) iabort (id)
Chapter 1 9

Getting Started
Using GPIB
Remote Function

The Agilent BASIC function REMOTE and the other listed I/O library functions cause the signal
generator to change from local operation to remote operation. In remote operation, the front
panel keys are disabled except for the Local key and the line power switch. Pressing the Local
key on the signal generator front panel restores manual operation.

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with
the exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library This NI-488.2 library function asserts the Remote Enable (REN) GPIB line.

All devices listed in the parameter list are put into a listen-active state
although no indication is generated by the signal generator. The parameter
list describes the interface or device descriptor.

SICL The Agilent SICL function puts an instrument, identified by the id
parameter, into remote mode and disables the front panel keys. Pressing the
Local key on the signal generator front panel restores manual operation.
The parameter id is the session identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKOUT and the other listed I/O library functions can be
used to disable the front panel keys including the Local key. With the Local key disabled, only
the controller (or a hard reset of the line power switch) can restore local control.

Agilent BASIC The LOCAL LOCKOUT function disables all front-panel signal generator keys.
Return to local control can occur only with a hard on/off, when the LOCAL
command is sent or if the Preset key is pressed.

Table 1-6

Agilent BASIC VISA NI-488.2 Agilent SICL

10 REMOTE 719 N/A EnableRemote (parameter
list)

iremote (id)

Table 1-7

Agilent BASIC VISA NI-488.2 Agilent SICL

10 LOCAL LOCKOUT 719 N/A SetRWLS (parameter
list)

igpibllo (id)
Chapter 110

Getting Started
Using GPIB
VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library The NI-488.2 library function places the instrument described in the

parameter list in remote mode by asserting the Remote Enable (REN) GPIB
line. The lockout state is then set using the Local Lockout (LLO) GPIB
message. Local control can be restored only with the EnableLocal NI-488.2
routine or hard reset. The parameter list describes the interface or device
descriptor.

SICL The Agilent SICL igpibllo function prevents user access to front panel keys
operation. The function puts an instrument, identified by the id parameter,
into remote mode with local lockout. The parameter id is the session
identifier and instrument address list.

Local Function

The Agilent BASIC function LOCAL and the other listed functions cause the signal generator
to return to local control with a fully enabled front panel.

Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation,
allowing access to the signal generator’s front panel keys.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library The NI-488.2 library function places the interface in local mode and allows

operation of the signal generator’s front panel keys. The ud parameter in the
parameter list is the interface or device descriptor.

SICL The Agilent SICL function puts the signal generator into Local operation;
enabling front panel key operation. The id parameter identifies the session.

Table 1-8

Agilent BASIC VISA NI-488.2 Agilent SICL

10 LOCAL 719 N/A ibloc (int ud) iloc(id)
Chapter 1 11

Getting Started
Using GPIB
Clear Function

The Agilent BASIC function CLEAR and the other listed I/O library functions cause the signal
generator to assume a cleared condition.

Agilent BASIC The CLEAR 719 function causes all pending output-parameter operations to
be halted, the parser (interpreter of programming codes) to reset and
prepare for a new programming code, stops any sweep in progress, and
continuous sweep to be turned off.

VISA Library The VISA library uses the viClear function. This function performs an IEEE
488.1 clear of the signal generator.

NI-488.2
Library The NI-488.2 library function sends the GPIB Selected Device Clear (SDC)

message to the device described by ud.

SICL The Agilent SICL function clears a device or interface. The function also
discards data in both the read and write formatted I/O buffers. The id
parameter identifies the session.

Output Function

The Agilent BASIC I/O function OUTPUT and the other listed I/O library functions put the
signal generator into a listen mode and prepare it to receive ASCII data, typically SCPI
commands.

Agilent BASIC The function OUTPUT 719 puts the signal generator into remote mode,
makes it a listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to
output data. This function formats according to the format string and sends
data to the device. The parameter list describes the session id and data to

Table 1-9

Agilent BASIC VISA NI-488.2 Agilent SICL

10 CLEAR 719 viClear(ViSession
vi)

ibclr(int ud) iclear (id)

Table 1-10

Agilent BASIC VISA NI-488.2 Agilent SICL

10 OUTPUT 719 viPrintf(parameter
list)

ibwrt(parameter
list)

iprintf (parameter
list)
Chapter 112

Getting Started
Using GPIB
send.

NI-488.2
Library The NI-488.2 library function addresses the GPIB and writes data to the

signal generator. The parameter list includes the instrument address,
session id, and the data to send.

SICL The Agilent SICL function converts data using the format string. The format
string specifies how the argument is converted before it is output. The
function sends the characters in the format string directly to the
instrument. The parameter list includes the instrument address, data buffer
to write, and so forth.

Enter Function

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other I/O
libraries use similar functions to read data from the signal generator.

Agilent BASIC The function ENTER 719 puts the signal generator into remote mode, makes
it a talker, and assigns data or status information to a designated variable.

VISA Library The VISA library uses the viScanf function and an associated parameter list
to receive data. This function receives data from the instrument, formats it
using the format string, and stores the data in the argument list. The
parameter list includes the session id and string argument.

NI-488.2
Library The NI-488.2 library function addresses the GPIB, reads data bytes from

the signal generator, and stores the data into a specified buffer. The
parameter list includes the instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, and stores the
results into the argument list. The conversion is done using conversion rules
for the format string. The parameter list includes the instrument address,
formatted data to read, and so forth.

Table 1-11

Agilent BASIC VISA NI-488.2 Agilent SICL

10 ENTER 719; viScanf (parameter
list)

ibrd (parameter list) iscanf (parameter list)
Chapter 1 13

Getting Started
Using LAN
Using LAN
The signal generator can be remotely programmed via a LAN interface and LAN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be
connected together and controlled by a LAN-based computer. LAN and its associated interface
operations are defined in the IEEE 802.2 standard. See the IEEE website for more details.

The signal generator supports the following LAN interface protocols:

• VXI-11

• Sockets LAN

• Telephone Network (TELNET)

• File Transfer Protocol (FTP)

VXI-11 and sockets LAN are used for general programming using the LAN interface,
TELNET is used for interactive, one command at a time instrument control, and FTP is for
file transfer.

1. Selecting I/O Libraries for LAN

The TELNET and FTP protocols do not require I/O libraries to be installed on your computer.
However, to write programs to control your signal generator, an I/O library must be installed
on your computer and the computer configured for instrument control using the LAN
interface.

The I/O libraries can be downloaded from the Agilent website. The following is a discussion on
these libraries.

Agilent VISA VISA is an I/O library used to develop I/O applications and instrument
drivers that comply with industry standards. Use the Agilent VISA library
for programming the signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent
VISA.
Chapter 114

Getting Started
Using LAN
2. Setting Up the LAN Interface

For LAN operation, an IP address must be assigned to the signal generator and the signal
generator connected to the LAN. Your system administrator can issue a hostname, IP address,
default gateway, and subnet mask for the signal generator.

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

2. Press Hostname.

3. Use the labeled text softkeys and/or numeric keypad to enter the desired hostname.

To erase the current hostname, press Editing Keys > Clear Text.

4. Press Enter.

5. Press IP Address and enter a desired address.

Use the left and right arrow keys to move the cursor. Use the up and down arrow keys,
front panel knob, or numeric keypad to enter an IP address. To erase the current IP
address, press the Clear Text softkey.

NOTE To remotely access the signal generator from a different LAN subnet, you must
also enter the subnet mask and default gateway. See your system administrator
to obtain the appropriate values.

6. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will
Reboot) softkey.

This action assigns a hostname and IP address (as well as a gateway and subnet mask, if
these have been configured) to the signal generator. The hostname, IP address, gateway
and subnet mask are not affected by an instrument preset or by a power cycle.

7. Connect the signal generator to the LAN using a 10BASE-T LAN cable.
Chapter 1 15

Getting Started
Using LAN
3. Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file
server using the ping utility. Compare your ping response to those described in Table 1-12.

From a UNIX ® workstation, type:

 ping hostname 64 10

where hostname is your instruments name and 64 is the packet size, and 10 is the number of
packets transmitted. Type man ping at the UNIX prompt for details on the ping command.

From the MS-DOS® Command Prompt or Windows environment, type:

 ping -n 10 hostname

where hostname is your instruments name and 10 is the number of echo requests. Type ping
at the command prompt for details on the ping command.

 UNIX is a registered trademark of the Open Group
 MS-DOS is a registered trademark of Microsoft Corporation
Chapter 116

Getting Started
Using LAN
Table 1-12 Ping Responses

Normal Response
for UNIX

A normal response to the ping command will be a total of 9 or 10
packets received with a minimal average round-trip time. The
minimal average will be different from network to network. LAN
traffic will cause the round-trip time to vary widely.

Normal Response
for DOS or Windows

A normal response to the ping command will be a total of 9 or 10
packets received if 10 echo requests were specified.

Error Messages If error messages appear, then check the command syntax before
continuing with troubleshooting. If the syntax is correct, resolve the
error messages using your network documentation or by consulting
your network administrator.

If an unknown host error message appears, try using the IP address
instead of the hostname. Also, verify that the host name and IP
address for the signal generator have been registered by your IT
administrator.

Check that the hostname and IP address are correctly entered in
the node names database. To do this, enter the nslookup
<hostname> command from the command prompt.

No Response If there is no response from a ping, no packets were received. Check
that the typed address or hostname matches the IP address or
hostname assigned to the signal generator in the System Utility >
GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the
signal generator, starting with your workstation. If a node doesn’t
respond, contact your IT administrator.

If the signal generator still does not respond to ping, you should
suspect a hardware problem.

Intermittent
Response

If you received 1 to 8 packets back, there maybe a problem with the
network. In networks with switches and bridges, the first few pings
may be lost until the these devices ‘learn’ the location of hosts. Also,
because the number of packets received depends on your network
traffic and integrity, the number might be different for your
network. Problems of this nature are best resolved by your IT
department.
Chapter 1 17

Getting Started
Using LAN
Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard.
VXI-11 is an instrument control protocol based on Open Network Computing/Remote
Procedure Call (ONC/RPC) interfaces running over TCP/IP. It is intended to provide GBIB
capabilities such as SRQ (Service Request), status byte reading, and DCAS (Device Clear
State) over a LAN interface. This protocol is a good choice for migrating from GPIB to LAN as
it has full Agilent VISA/SICL support. See the VXI website, www.vsi.org, for more information
and details on the specification.

Configuring for VXI-11

The Agilent I/O library has a program, I/O Config, that is used to setup the computer/signal
generator interface for the VXI-11 protocol. Download the latest version of the Agilent I/O
library from the Agilent website. Refer to the Agilent I/O library user manual, documentation,
and Help menu for information on running the I/O Config program and configuring the
VXI-11 interface.

Use the I/O Config program to configure the LAN client. Once the computer is configured for a
LAN client, you can use the VXI-11 protocol and the VISA library to send SCPI commands to
the signal generator over the LAN interface. Example programs for this protocol are included
in “LAN Programming Examples” on page 64 of this programming guide.

NOTE For Agilent I/O library version J.01.0100, the “identify devices at run-time”
check box must be unchecked. Refer to Figure 1-2.
Chapter 118

Getting Started
Using LAN
Figure 1-2 Show Devices Form
Chapter 1 19

Getting Started
Using LAN
Using Sockets LAN

Sockets LAN is a method used to communicate with the signal generator over the LAN
interface using the Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is a
fundamental technology used for computer networking and allows applications to
communicate using standard mechanisms built into network hardware and operating
systems. The method accesses a port on the signal generator from which bidirectional
communication with a network computer can be established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP)
with a device port number and represents a single connection between two pieces of software.
The socket can be accessed using code libraries packaged with the computer operating system.
Two common versions of socket libraries are the Berkeley Sockets Library for UNIX systems
and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is
compatible with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The
signal generator is also compatible with other standard sockets APIs. The signal generator
can be controlled using SCPI commands that are output to a socket connection established in
your program.

Before you can use sockets LAN, you must select the signal generator’s sockets port number to
use:

• Standard mode. Available on port 5025. Use this port for simple programming.

• TELNET mode. The telnet SCPI service is available on port 5023.

NOTE The signal generator will accept references to telnet SCPI service at port 7777
and sockets SCPI service at port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.
Chapter 120

Getting Started
Using LAN
Using TELNET LAN

TELNET provides a means of communicating with the signal generator over the LAN. The
TELNET client, run on a LAN connected computer, will create a login session on the signal
generator. A connection, established between computer and signal generator, generates a user
interface display screen with SCPI> prompts on the command line.

Using the TELNET protocol to send commands to the signal generator is similar to
communicating with the signal generator over GPIB. You establish a connection with the
signal generator and then send or receive information using SCPI commands. Communication
is interactive: one command at a time.

Using TELNET and MS-DOS Command Prompt

1. On the PC click Start > Programs > Command Prompt.

2. At the command prompt, type in telnet.

3. Press enter. The TELNET display screen will be displayed.

4. Click on the Connect menu then select Remote System. A connection form will be displayed.
Refer to Figure 1-3.

5. Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.

• Host Name - IP address or hostname

• Port - 5023

• Term Type - vt100

6. At the SCPI> prompt, enter SCPI commands. Refer to Figure 1-4 on page 23.

7. To signal device clear, press Ctrl-C on your keyboard.

8. Select Exit from the Connect menu and type exit at the command prompt to end the
TELNET session.
Chapter 1 21

Getting Started
Using LAN
Figure 1-3 Connect Form

Using TELNET On a PC With a Host/Port Setting Menu GUI

1. On your PC click Start > Run.

2. Type telnet then click the Ok button. The TELNET connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form will be displayed.
Refer to Figure 1-3.

4. Enter the hostname, port number, and TermType then click Connect. Refer to Figure 1-3.

• Host Name - signal generator’s IP address or hostname

• Port - 5023

• Term Type - vt100

5. At the SCPI> prompt, enter SCPI commands. Refer to Figure 1-4.

6. To signal device clear, press Ctrl-C.

7. Select Exit from the Connect menu to end the TELNET session.
Chapter 122

Getting Started
Using LAN
Figure 1-4 TELNET Window

The Standard UNIX TELNET Command

Synopsis telnet [host [port]]

Description This command is used to communicate with another host using the TELNET
protocol. When the command telnet is invoked with host or port arguments, a connection is
opened to the host, and input is sent from the user to the host.

Options and Parameters The command telnet operates in character-at-a-time or
line-by-line mode. In line-by-line mode, typed text is echoed to the screen. When the line is
completed (by pressing the Enter key), the text line is sent to host. In character-at-a-time
mode, text is echoed to the screen and sent to host as it is typed. At the UNIX prompt, type
man telnet to view the options and parameters available with the telnet command.
Chapter 1 23

Getting Started
Using LAN
NOTE If your TELNET connection is in line-by-line mode, there is no local echo. This
means you cannot see the characters you are typing until you press the Enter
key. To remedy this, change your TELNET connection to character-by-character
mode. Escape out of TELNET and, at the telnet> prompt, type mode char. If
this does not work, consult your TELNET program’s documentation.

Unix TELNET Example

To connect to the instrument with host name myInstrument and port number 5023, enter the
following command on the command line:

telnet myInstrument 5023

When you connect to the signal generator, the UNIX window will display a welcome message
and a SCPI command prompt. The instrument is now ready to accept your SCPI commands.
As you type SCPI commands, query results appear on the next line. When you are done, break
the TELNET connection using an escape character. For example, Ctrl -],where the control key
and the] are pressed at the same time.

The following example shows TELNET commands:

$ telnet myinstrument 5023

Trying....

Connected to signal generator

Escape character is ‘^]’.

Agilent Technologies, E8254A SN-US00000001

Firmware:

Hostname: your instrument

IP :xxx.xx.xxx.xxx

SCPI>
Chapter 124

Getting Started
Using LAN
Using FTP

FTP allows users to transfer files between the signal generator and any computer connected
to the LAN. For example, you can use FTP to download instrument screen images to a
computer or download files to the signal generator. When logged onto the signal generator
with the FTP command, the signal generator’s file structure can be accessed. Figure 1-5
shows the FTP interface and lists the directories in the signal generator’s user level directory.

NOTE File access is limited to the signal generator’s /user directory.

Figure 1-5 FTP Screen

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1. On the PC click Start > Programs > Command Prompt.

2. At the command prompt enter:

ftp < IP address > or < hostname >

3. At the user name prompt, press enter.
Chapter 1 25

Getting Started
Using LAN
4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt
will show you the FTP commands that are available on your system.

5. Type quit or bye to end your FTP session.

6. Type exit to end the command prompt session.
Chapter 126

Getting Started
Using RS-232
Using RS-232
The RS-232 serial interface can be used to communicate with the signal generator. The
RS-232 connection is standard on most PCs and can be connected to the signal generator’s
rear-panel connector using the cable described in Table 1-13 on page 28. Many functions
provided by GPIB, with the exception of indefinite blocks, serial polling, GET, non-SCPI
remote languages, and remote mode are available using the RS-232 interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is
slow. The data transmitted and received is usually in ASCII format with SCPI commands
being sent to the signal generator and ASCII data returned.

1. Selecting I/O Libraries for RS-232

The I/O libraries can be downloaded from the National Instrument website, www.ni.com, or
Agilent’s website, www.agilent.com. The following is a discussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive I/O library that can be used
to control the signal generator over the RS-232 interface. This library has
many low level functions that can be used in BASIC applications to control
the signal generator over the RS-232 interface.

VISA VISA is an I/O library used to develop I/O applications and instrument
drivers that comply with industry standards. It is recommended that the
VISA library be used for programming the signal generator. The NI-VISA
and Agilent VISA libraries are similar implementations of VISA and have
the same commands, syntax, and functions. The differences are in the lower
level I/O libraries used to communicate over the RS-232; NI-488.2 and SICL
respectively.

NI-488.2 NI-488.2 I/O libraries can be used to develop applications for the RS-232
interface. See National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the RS-232 interface.
See Agilent’s website for information on SICL.
Chapter 1 27

Getting Started
Using RS-232
2. Setting Up the RS-232 Interface

1. Press Utility > GPIB/RS-232 LAN> RS-232 Setup > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the
baud rate of your computer or UNIX workstation or adjust the baud rate settings on your
computer to match the baud rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with
the “VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to
the signal generator and prints them to the display.

3. Connect an RS-232 cable from the computer’s serial connector to the signal generator’s
AXILLARY INTERFACE connector. Refer to Table 1-13 for RS-232 cable information.

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires
pins 2, 3, 5, 7, and 8 may be used.

Table 1-13 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number

1 Serial RS-232 cable 9-pin (male) to
9-pin (female)

8120-6188
Chapter 128

Getting Started
Using RS-232
3. Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232
interface functionality.

To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator and perform the following steps:

1. On the PC click Start > Programs > Accessories > HyperTerminal.

2. Select HyperTerminal.

3. Enter a name for the session in the text box and select an icon.

4. Select COM1 (COM2 can be used if COM1 is unavailable).

5. In the COM1 (or COM2, if selected) properties, set the following parameters:

• Bits per second: 9600 must match signal generator’s baud rate; On the signal
generator Select Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Baud Rate > 9600.

• Data bits: 8

• Parity: None

• Stop bits: 1

• Flow Control: None

NOTE Flow control, via the RTS line, is driven by the signal generator. For the
purposes of this verification, the controller (PC) can ignore this if flow control is
set to None. However, to control the signal generator programmatically or
download files to the signal generator, you must enable RTS-CTS (hardware)
flow control on the controller. Note that only the RTS line is currently used.

6. Go to the HyperTerminal window and select File > Properties

7. Go to Settings > Emulation and select VT100.

8. Leave the Backscroll buffer lines set to the default value.

9. Go to Settings > ASCII Setup.

10.Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *IDN? followed by <Ctrl j> in
the HyperTerminal window. The <Ctrl j> is the new line character (on the keyboard press
the Cntrl key and the j key simultaneously).

The signal generator should return a string similar to the following, depending on model:
Chapter 1 29

Getting Started
Using RS-232
Agilent Technologies <instrument model name and number>, US40000001,C.02.00

Character Format Parameters

The signal generator uses the following character format parameters when communicating
via RS-232:

• Character Length: Eight data bits are used for each character, excluding start, stop, and
parity bits.

• Parity Enable: Parity is disabled (absent) for each character.

• Stop Bits: One stop bit is included with each character.

If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal
generator.

2. Verify that the RS-232 cable is identical to the cable specified in Table 1-13.

3. Verify that the application is using the correct computer COM port and that the RS-232
cable is properly connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.
Chapter 130

2 Programming Examples
31

Programming Examples
Using the Programming Examples
Using the Programming Examples
The programming examples for remote control of the signal generator use the GPIB, LAN,
and RS-232 interfaces and demonstrate instrument control using different I/O libraries and
programming languages. Many of the example programs in this chapter are interactive; the
user will be prompted to perform certain actions or verify signal generator operation or
functionality. Example programs are written in the following languages:

• Agilent BASIC

• C/C++

• Java

• PERL

See Chapter 1 of this programming guide for information on interfaces, I/O libraries, and
programming languages.

The example programs are also available on the ESG Documentation CD-ROM, allowing you
to cut and paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel
keys, except the Local key, are disabled. Press the Local key to revert to manual
operation.

NOTE To update the signal generator’s front panel display so that it reflects remote
command setups, enable the remote display: press Utility > Display > Update in
Remote Off On softkey until On is highlighted or send the SCPI command
:DISPlay:REMote ON. For faster test execution, disable front panel updates.

Programming Examples Development Environment

The C/C++ examples in this guide were written using an IBM-compatible personal computer
(PC) with the following configuration:

• Pentium® processor

• Windows NT 4.0 operating system

 Pentium is a U.S. registered trademark of Intel Corporation
Chapter 232

Programming Examples
Using the Programming Examples
• C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

• National Instruments PCI- GPIB interface card or Agilent GPIB interface card

• National Instruments VISA Library or Agilent VISA library

• COM1 or COM2 serial port available

• LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation.

Running C/C++ Programming Examples

To run the example programs written in C/C++ you must include the required files in the
Microsoft Visual C++ 6.0 project.

If you are using the VISA library do the following:

• add the visa32.lib file to the Resource Files

• add the visa.h file to the Header Files

If you are using the NI-488.2 library do the following:

• add the GPIB-32.OBJ file to the Resource Files

• add the windows.h file to the Header Files

• add the Deci-32.h file to the Header Files

Refer to the National Instrument website for information on the NI-488.2 library and file
requirements. For information on the VISA library see the Agilent website or National
Instrument’s website.
Chapter 2 33

Programming Examples
GPIB Programming Examples
GPIB Programming Examples

• “Interface Check using Agilent BASIC” on page 35

• “Interface Check Using NI-488.2 and C++” on page 36

• “Interface Check using VISA and C” on page 37

• “Local Lockout Using Agilent BASIC” on page 38

• “Local Lockout Using NI-488.2 and C++” on page 39

• “Queries Using Agilent BASIC” on page 41

• “Queries Using NI-488.2 and C++” on page 43

• “Queries Using VISA and C” on page 45

• “Generating a CW Signal Using VISA and C” on page 47

• “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 49

• “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 51

• “Generating a Step-Swept Signal Using VISA and C” on page 53

• “Saving and Recalling States Using VISA and C” on page 55

• “Reading the Data Questionable Status Register Using VISA and C” on page 57

• “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 60

Before Using the Examples

If the Agilent GPIB interface card is used, then the Agilent VISA library should be installed
along with Agilent SICL. If the National Instruments PCI-GPIB interface card is used, the
NI-VISA library along with the NI-488.2 library should be installed. Refer to “2. Selecting I/O
Libraries for GPIB” on page 7 and the documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is
addressed at 7 and the signal generator at 19. The GPIB address designator for
other libraries is typically GPIB0 or GPIB1.
Chapter 234

Programming Examples
GPIB Programming Examples
Interface Check using Agilent BASIC

This simple program causes the signal generator to perform an instrument reset. The SCPI
command *RST places the signal generator into a pre-defined state and the remote
annunciator (R) appears on the front panel display.

The following program example is available on the ESG Documentation CD-ROM as
basicex1.txt.

10 !**
20 !
30 ! PROGRAM NAME: basicex1.txt
40 !
50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB connections and
60 ! interface are functional.
70 !
80 ! Connect a controller to the signal generator using a GPIB cable.
90 !
100 !
110 ! CLEAR and RESET the controller and type in the following commands and then
120 ! RUN the program:
130 !
140 !**
150 !
160 Sig_gen=719 ! Declares a variable to hold the signal generator’s address
170 LOCAL Sig_gen ! Places the signal generator into Local mode
180 CLEAR Sig_gen ! Clears any pending data I/O and resets the parser
190 REMOTE 719 ! Puts the signal generator into remote mode
200 CLEAR SCREEN ! Clears the controllers display
210 REMOTE 719
220 OUTPUT Sig_gen;"*RST" ! Places the signal generator into a defined state
230 PRINT "The signal generator should now be in REMOTE."
240 PRINT
250 PRINT "Verify that the remote [R] annunciator is on. Press the ‘Local’ key, "
260 PRINT "on the front panel to return the signal generator to local control."
270 PRINT
280 PRINT "Press RUN to start again."
290 END ! Program ends
Chapter 2 35

Programming Examples
GPIB Programming Examples
Interface Check Using NI-488.2 and C++

This example uses the NI-488.2 library to verify that the GPIB connections and interface are
functional. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following
code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
niex1.cpp.

// ***
//
// PROGRAM NAME: niex1.cpp
//
// PROGRAM DESCRIPTION: This program verifies that the GPIB connections and
// interface are functional.
//
// Connect a GPIB cable from the PC GPIB card to the signal generator
// Enter the following code into the source .cpp file and execute the program
//
// ***

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"
using namespace std;

int GPIB0= 0; // Board handle
Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{
 int sig; // Declares a device descriptor variable
 sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
 ibclr(sig); // Sends device clear message to signal generator
 ibwrt(sig, "*RST", 4); // Places the signal generator into a defined state

 // Print data to the output window
 cout << "The signal generator should now be in REMOTE. The remote indicator"<<endl;
 cout <<"annunciator R should appear on the signal generator display"<<endl;

 return 0;

}

Chapter 236

Programming Examples
GPIB Programming Examples
Interface Check using VISA and C

This program uses VISA library functions and the C language to communicate with the signal
generator. The program verifies that the GPIB connections and interface are functional.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex1.cpp.

//**
// PROGRAM NAME:visaex1.cpp
//
// PROGRAM DESCRIPTION:This example program verifies that the GPIB connections and
// and interface are functional.
// Turn signal generator power off then on and then run the program
//
//**

#include <visa.h>
#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

void main ()
{

ViSession defaultRM, vi; // Declares a variable of type ViSession
 // for instrument communication
ViStatus viStatus = 0;

 // Opens a session to the GPIB device
 // at address 19

viStatus=viOpenDefaultRM(&defaultRM);
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

viPrintf(vi, "*RST\n"); // initializes signal generator
 // prints to the output window
printf("The signal generator should now be in REMOTE. The remote

indicator\n");
printf("annunciator R should appear on the signal generator display\n");
printf("\n");

viClose(vi); // closes session
viClose(defaultRM); // closes default session

}

Chapter 2 37

Programming Examples
GPIB Programming Examples
Local Lockout Using Agilent BASIC

This example demonstrates the Local Lockout function. Local Lockout disables the front
panel signal generator keys.

The following program example is available on the ESG Documentation CD-ROM as
basicex2.txt.

10 !***
20 !
30 ! PROGRAM NAME: basicex2.txt
40 !
50 ! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal generators
60 ! functional front panel keys are disabled except for
70 ! the Local and Contrast keys. The LOCAL LOCKOUT
80 ! command will disable the Local key.
90 ! The LOCAL command, executed from the controller, is then
100 ! the only way to return the signal generator to front panel,
110 ! Local, control.
120 !***
130 Sig_gen=719 ! Declares a variable to hold signal generator address
140 CLEAR Sig_gen ! Resets signal generator parser and clears any output
150 LOCAL Sig_gen ! Places the signal generator in local mode
160 REMOTE Sig_gen ! Places the signal generator in remote mode
170 CLEAR SCREEN ! Clears the controllers display
180 OUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state
190 ! The following print statements are user prompts
200 PRINT "The signal generator should now be in remote."
210 PRINT "Verify that the ’R’ and ’L’ annunciators are visable"
220 PRINT ".......... Press Continue"
230 PAUSE
240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT mode
250 PRINT ! Prints user prompt messages
260 PRINT "Signal generator should now be in LOCAL LOCKOUT mode."
270 PRINT
280 PRINT "Verify that all keys including ‘Local’ (except Contrast keys) have no
effect."
290 PRINT
300 PRINT ".......... Press Continue"
310 PAUSE
320 PRINT
330 LOCAL 7 ! Returns signal generator to Local control
340 ! The following print statements are user prompts
350 PRINT "Signal generator should now be in Local mode."
360 PRINT
370 PRINT "Verify that the signal generator’s front-panel keyboard is functional."
380 PRINT
390 PRINT "To re-start this program press RUN."
400 END
Chapter 238

Programming Examples
GPIB Programming Examples
Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout mode. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as
niex2.cpp.

// **
// PROGRAM NAME: niex2.cpp
//
// PROGRAM DESCRIPTION: This program will place the signal generator into
// LOCAL LOCKOUT mode. All front panel keys, except the Contrast key, will be disabled.
// The local command, ’ibloc(sig)’ executed via program code, is the only way to
// return the signal generator to front panel, Local, control.
// **

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"
using namespace std;
int GPIB0= 0; // Board handle
Addr4882_t Address[31]; // Declares a variable of type Addr4882_t

int main()

{
int sig; // Declares variable to hold interface descriptor
sig = ibdev(0, 19, 0, 13, 1, 0); // Opens and initialize a device descriptor
ibclr(sig); // Sends GPIB Selected Device Clear (SDC) message
ibwrt(sig, "*RST", 4); // Places signal generator in a defined state
cout << "The signal generator should now be in REMOTE. The remote mode R "<<endl;
cout <<"annunciator should appear on the signal generator display."<<endl;
cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,’\n’);
SendIFC(GPIB0); // Resets the GPIB interface
Address[0]=19; // Signal generator’s address
Address[1]=NOADDR; // Signifies end element in array. Defined in

 // DECL-32.H
SetRWLS(GPIB0, Address); // Places device in Remote with Lockout State.

cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
keys"<<endl;

cout<< "including the ’Local’ key are disabled (Contrast keys are not
affected)"<<endl;

cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,’\n’);
ibloc(sig); // Returns signal generator to local control
Chapter 2 39

Programming Examples
GPIB Programming Examples
cout<<endl;
cout <<"The signal generator should now be in local mode\n";

return 0;}
}

Chapter 240

Programming Examples
GPIB Programming Examples
Queries Using Agilent BASIC

This example demonstrates signal generator query commands. The signal generator can be
queried for conditions and setup parameters. Query commands are identified by the question
mark as in the identify command *IDN?

The following program example is available on the ESG Documentation CD-ROM as
basicex3.txt.

10 !**
20 !
30 ! PROGRAM NAME: basicex3.txt
40 !
50 ! PROGRAM DESCRIPTION: In this example, query commands are used with response
60 ! data formats.
70 !
80 ! CLEAR and RESET the controller and RUN the following program:
90 !
100 !**
110 !
120 DIM A$[10],C$[100],D$[10] ! Declares variables to hold string response data
130 INTEGER B ! Declares variable to hold integer response data
140 Sig_gen=719 ! Declares variable to hold signal generator address
150 LOCAL Sig_gen ! Puts signal generator in Local mode
160 CLEAR Sig_gen ! Resets parser and clears any pending output
170 CLEAR SCREEN ! Clears the controller’s display
180 OUTPUT Sig_gen;"*RST" ! Puts signal generator into a defined state
190 OUTPUT Sig_gen;"FREQ:CW?" ! Querys the signal generator CW frequency setting
200 ENTER Sig_gen;F ! Enter the CW frequency setting
210 ! Print frequency setting to the controller display
220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"
230 PRINT
240 OUTPUT Sig_gen;"POW:AMPL?" ! Querys the signal generator power level
250 ENTER Sig_gen;W ! Enter the power level
260 ! Print power level to the controller display
270 PRINT "Current power setting is: ";W;"dBM"
280 PRINT
290 OUTPUT Sig_gen;"FREQ:MODE?" ! Querys the signal generator for frequency mode
300 ENTER Sig_gen;A$! Enter in the mode: CW, Fixed or List
310 ! Print frequency mode to the controller display
320 PRINT "Source's frequency mode is: ";A$
330 PRINT
340 OUTPUT Sig_gen;"OUTP OFF" ! Turns signal generator RF state off
350 OUTPUT Sig_gen;"OUTP?" ! Querys the operating state of the signal generator
360 ENTER Sig_gen;B ! Enter in the state (0 for off)
370 ! Print the on/off state of the signal generator to the controller display
380 IF B>0 THEN
390 PRINT "Signal Generator output is: on"
400 ELSE
410 PRINT "Signal Generator output is: off"
Chapter 2 41

Programming Examples
GPIB Programming Examples
420 END IF
430 OUTPUT Sig_gen;"*IDN?" ! Querys for signal generator ID
440 ENTER Sig_gen;C$! Enter in the signal generator ID
450 ! Print the signal generator ID to the controller display
460 PRINT
470 PRINT "This signal generator is a ";C$
480 PRINT
490 ! The next command is a query for the signal generator’s GPIB address
500 OUTPUT Sig_gen;"SYST:COMM:GPIB:ADDR?"
510 ENTER Sig_gen;D$! Enter in the signal generator’s address
520 ! Print the signal generator’s GPIB address to the controllers display
530 PRINT "The GPIB address is ";D$
540 PRINT
550 ! Print user prompts to the controller’s display
560 PRINT "The signal generator is now under local control"
570 PRINT "or Press RUN to start again."
580 END
Chapter 242

Programming Examples
GPIB Programming Examples
Queries Using NI-488.2 and C++

This example uses the NI-488.2 library to query different instrument states and conditions.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
niex3.cpp.

//***
// PROGRAM NAME: niex3.cpp
//
// PROGRAM DESCRIPTION: This example demonstrates the use of query commands.
//
// The signal generator can be queried for conditions and instrument states.
// These commands are of the type "*IDN?" where the question mark indicates
// a query.
//
//***

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"
using namespace std;
int GPIB0= 0; // Board handle
Addr4882_t Address[31]; // Declare a variable of type Addr4882_t

int main()

{
int sig; // Declares variable to hold interface descriptor
int num;
char rdVal[100]; // Declares variable to read instrument responses
sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor
ibloc(sig); // Places the signal generator in local mode
ibclr(sig); // Sends Selected Device Clear(SDC) message
ibwrt(sig, "*RST", 4); // Places signal generator in a defined state
ibwrt(sig, ":FREQuency:CW?",14); // Querys the CW frequency
ibrd(sig, rdVal,100); // Reads in the response into rdVal
rdVal[ibcntl] = ’\0’; // Null character indicating end of array
cout<<"Source CW frequency is "<<rdVal; // Print frequency of signal generator
cout<<"Press any key to continue"<<endl;
cin.ignore(10000,’\n’);
ibwrt(sig, "POW:AMPL?",10); // Querys the signal generator
ibrd(sig, rdVal,100); // Reads the signal generator power level
rdVal[ibcntl] = ’\0’; // Null character indicating end of array

 // Prints signal generator power level
cout<<"Source power (dBm) is : "<<rdVal;
cout<<"Press any key to continue"<<endl;
Chapter 2 43

Programming Examples
GPIB Programming Examples
cin.ignore(10000,’\n’);
ibwrt(sig, ":FREQ:MODE?",11); // Querys source frequency mode
ibrd(sig, rdVal,100); // Enters in the source frequency mode
rdVal[ibcntl] = ’\0’; // Null character indicating end of array
cout<<"Source frequency mode is "<<rdVal; // Print source frequency mode
cout<<"Press any key to continue"<<endl;
cin.ignore(10000,’\n’);
ibwrt(sig, "OUTP OFF",12); // Turns off RF source
ibwrt(sig, "OUTP?",5); // Querys the on/off state of the instrument
ibrd(sig,rdVal,2); // Enter in the source state
rdVal[ibcntl] = ’\0’;
num = (int (rdVal[0]) -(’0’));
if (num > 0){

cout<<"Source RF state is : On"<<endl;
}else{

cout<<"Source RF state is : Off"<<endl;}
cout<<endl;
ibwrt(sig, "*IDN?",5); // Querys the instrument ID
ibrd(sig, rdVal,100); // Reads the source ID
rdVal[ibcntl] = ’\0’; // Null character indicating end of array
cout<<"Source ID is : "<<rdVal; // Prints the source ID
cout<<"Press any key to continue"<<endl;
cin.ignore(10000,’\n’);

 ibwrt(sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address
ibrd(sig, rdVal,100); // Reads the source address
rdVal[ibcntl] = ’\0’; // Null character indicates end of array

 // Prints the signal generator address
cout<<"Source GPIB address is : "<<rdVal;
cout<<endl;
cout<<"Press the 'Local' key to return the signal generator to LOCAL control”<<endl;
cout<<endl;

return 0;
}

Chapter 244

Programming Examples
GPIB Programming Examples
Queries Using VISA and C

This example uses VISA library functions to query different instrument states and conditions.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex3.cpp.

//**
// PROGRAM FILE NAME:visaex3.cpp
//
// PROGRAM DESCRIPTION:This example demonstrates the use of query commands. The signal
// generator can be queried for conditions and instrument states. These commands are of
// the type "*IDN?"; the question mark indicates a query.
//
//**

#include <visa.h>
#include "StdAfx.h"
#include <iostream>
#include <conio.h>
#include <stdlib.h>
using namespace std;

void main ()
{

ViSession defaultRM, vi; // Declares variables of type ViSession
 // for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications
char rdBuffer [256]; // Declares variable to hold string data
int num; // Declares variable to hold integer data
 // Initialize the VISA system
viStatus=viOpenDefaultRM(&defaultRM);
 // Open session to GPIB device at address 19
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
 printf("Check instruments and connections\n");
 printf("\n");
 exit(0);}
viPrintf(vi, "*RST\n"); // Resets signal generator
viPrintf(vi, "FREQ:CW?\n"); // Querys the CW frequency
viScanf(vi, "%t", rdBuffer); // Reads response into rdBuffer
 // Prints the source frequency
printf("Source CW frequency is : %s\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); // Prints new line character to the display
Chapter 2 45

Programming Examples
GPIB Programming Examples
getch();
viPrintf(vi, "POW:AMPL?\n"); // Querys the power level
viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer
 // Prints the source power level
printf("Source power (dBm) is : %s\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); // Prints new line character to the display
getch();
viPrintf(vi, "FREQ:MODE?\n"); // Querys the frequency mode
viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer
 // Prints the source freq mode
printf("Source frequency mode is : %s\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); // Prints new line character to the display
getch();
viPrintf(vi, "OUTP OFF\n"); // Turns source RF state off
viPrintf(vi, "OUTP?\n"); // Querys the signal generator’s RF state
viScanf(vi, "%1i", &num); // Reads the response (integer value)
 // Prints the on/off RF state

 if (num > 0) {
printf("Source RF state is : on\n");

}else{
printf("Source RF state is : off\n");

}
 // Close the sessions

viClose(vi);
viClose(defaultRM);

}

Chapter 246

Programming Examples
GPIB Programming Examples
Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal
generator is set for a CW frequency of 500 kHz and a power level of −2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex4.cpp.

//**
// PROGRAM FILE NAME: visaex4.cpp
//
// PROGRAM DESCRIPTION: This example demonstrates query commands. The signal generator
// frequency and power level.
// The RF state of the signal generator is turn on and then the state is queried. The
// response will indicate that the RF state is on. The RF state is then turned off and
// queried. The response should indicate that the RF state is off. The query results are
// printed to the to the display window.
//
//**

#include "StdAfx.h"
#include <visa.h>
#include <iostream>
#include <stdlib.h>
#include <conio.h>

void main ()
{
 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications
char rdBuffer [256]; // Declare variable to hold string data
int num; // Declare variable to hold integer data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA system
 // Open session to GPIB device at address 19
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

viPrintf(vi, "*RST\n"); // Reset the signal generator
viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CW frequency for 500 kHz
viPrintf(vi, "FREQ:CW?\n"); // Query the CW frequency
viScanf(vi, "%t", rdBuffer); // Read signal generator response
printf("Source CW frequency is : %s\n", rdBuffer); // Print the frequency
Chapter 2 47

Programming Examples
GPIB Programming Examples
viPrintf(vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to -2.3 dBm
viPrintf(vi, "POW:AMPL?\n"); // Query the power level
viScanf(vi, "%t", rdBuffer); // Read the response into rdBuffer
printf("Source power (dBm) is : %s\n", rdBuffer); // Print the power level
viPrintf(vi, "OUTP:STAT ON\n"); // Turn source RF state on
viPrintf(vi, "OUTP?\n"); // Query the signal generator’s RF state
viScanf(vi, "%1i", &num); // Read the response (integer value)

// Print the on/off RF state

if (num > 0) {
printf("Source RF state is : on\n");

}else{
printf("Source RF state is : off\n");

}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
viClear(vi);
viPrintf(vi,"OUTP:STAT OFF\n"); // Turn source RF state off
viPrintf(vi, "OUTP?\n"); // Query the signal generator’s RF state
viScanf(vi, "%1i", &num); // Read the response

// Print the on/off RF state

 if (num > 0) {
printf("Source RF state is now: on\n");

}else{
printf("Source RF state is now: off\n");

}
 // Close the sessions

printf("\n");
viClear(vi);
viClose(vi);
viClose(defaultRM);

}

Chapter 248

Programming Examples
GPIB Programming Examples
Generating an Externally Applied AC-Coupled FM Signal Using VISA
and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier
frequency of 700 MHz, a power level of −2.5 dBm, and a deviation of 20 kHz. Before running
the program:

• Connect the output of a modulating signal source to the signal generator’s EXT 2 input
connector.

• Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex5.cpp.

//**
// PROGRAM FILE NAME:visaex5.cpp
//
// PROGRAM DESCRIPTION:This example sets the signal generator FM source to External 2,
// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power level
// to -2.5 dBm. The RF state is set to on.
//
//**

#include <visa.h>
#include "StdAfx.h"
#include <iostream>
#include <stdlib.h>
#include <conio.h>

void main ()
{
 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications
 // Initialize VISA session
viStatus=viOpenDefaultRM(&defaultRM);
 // open session to gpib device at address 19
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Example program to set up the signal generator\n");
Chapter 2 49

Programming Examples
GPIB Programming Examples
printf("for an AC-coupled FM signal\n");
printf("Press any key to continue\n");
printf("\n");
getch();
printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM
viPrintf(vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling to AC
viPrintf(vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation to 20 kHz
viPrintf(vi, "FREQ 700 MHz\n"); // Sets carrier frequency to 700 MHz
viPrintf(vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM:STAT ON\n"); // Turns on frequency modulation
viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output
 // Print user information
printf("Power level : -2.5 dBm\n");
printf("FM state : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 700 MHZ\n");
printf("Deviation : 20 kHZ\n");
printf("EXT2 and AC coupling are selected\n");
printf("\n"); // Prints a carrage return
 // Close the sessions
viClose(vi);
viClose(defaultRM);

}

Chapter 250

Programming Examples
GPIB Programming Examples
Generating an Internal AC-Coupled FM Signal Using VISA and C

In this example the VISA library is used to generate an ac-coupled internal FM signal at a
carrier frequency of 900 MHz and a power level of −15 dBm. The FM rate will be 5 kHz and
the peak deviation will be 100 kHz. Launch Microsoft Visual C++ 6.0, add the required files,
and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex6.cpp.

//**
// PROGRAM FILE NAME:visaex6.cpp
//
// PROGRAM DESCRIPION:This example generates an AC-coupled internal FM signal at a 900
// MHz carrier frequency and a power level of -15 dBm. The FM rate is 5 kHz and the peak
// deviation 100 kHz
//
//**

#include <visa.h>
#include "StdAfx.h"
#include <iostream>
#include <stdlib.h>
#include <conio.h>

void main ()
{

ViSession defaultRM, vi; // Declares variables of type ViSession
 // for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session
 // open session to gpib device at address 19
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Example program to set up the signal generator\n");
printf("for an AC-coupled FM signal\n");
printf("\n");
printf("Press any key to continue\n");
getch();
viClear(vi); // Clears the signal generator
viPrintf(vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "FM2:INT:FREQ 5 kHz\n"); // Sets EXT 2 source for FM
viPrintf(vi, "FM2:DEV 100 kHz\n"); // Sets FM path 2 coupling to AC
Chapter 2 51

Programming Examples
GPIB Programming Examples
viPrintf(vi, "FREQ 900 MHz\n"); // Sets carrier frequency to 700 MHz
viPrintf(vi, "POW -15 dBm\n"); // Sets the power level to -2.3 dBm
viPrintf(vi, "FM2:STAT ON\n"); // Turns on frequency modulation
viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output
printf("\n"); // Prints a carriage return

 // Print user information
printf("Power level : -15 dBm\n");
printf("FM state : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 900 MHZ\n");
printf("Deviation : 100 kHZ\n");
printf("Internal modulation : 5 kHz\n");
printf("\n"); // Print a carrage return

// Close the sessions
viClose(vi);
viClose(defaultRM);

}

Chapter 252

Programming Examples
GPIB Programming Examples
Generating a Step-Swept Signal Using VISA and C

In this example the VISA library is used to set the signal generator for a continuous step
sweep on a defined set of points from 500 MHz to 800 MHz. The number of steps is set for 10
and the dwell time at each step is set to 500 ms. The signal generator will then be set to local
mode which allows the user to make adjustments from the front panel. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex7.cpp.

//**
// PROGRAM FILE NAME:visaex7.cpp
//
// PROGRAM DESCRIPTION:This example will program the signal generator to perform a step
// sweep from 500-800 MHz with a .5 sec dwell at each frequency step.
//
//**

#include <visa.h>
#include "StdAfx.h"
#include <iostream>

void main ()
{

ViSession defaultRM, vi; // Declares variables of type ViSession
// vi establishes instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session
// Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

viClear(vi); // Clears the signal generator
viPrintf(vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "*CLS\n"); // Clears the status byte register
viPrintf(vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq mode to list
viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type to step
viPrintf(vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency
viPrintf(vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency
viPrintf(vi, "SWE:POIN 10\n"); // Sets number of steps (30 mHz/step)
viPrintf(vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500 ms/step
viPrintf(vi, "POW:AMPL -5 dBm\n"); // Sets the power level for -5 dBm
viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output on
Chapter 2 53

Programming Examples
GPIB Programming Examples
viPrintf(vi, "INIT:CONT ON\n"); // Begins the step sweep operation
 // Print user information
printf("The signal generator is in step sweep mode. The frequency range

is\n");
printf("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz

step.\n");
printf("\n"); // Prints a carriage return/line feed

 viPrintf(vi, "OUTP:STAT OFF\n"); // Turns the RF output off
printf("Press the front panel Local key to return the\n");
printf("signal generoator to manual operation.\n");
 // Closes the sessions
printf("\n");
viClose(vi);
viClose(defaultRM);

}

Chapter 254

Programming Examples
GPIB Programming Examples
Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These
settings can then be recalled separately; either from the keyboard or from the signal
generator’s front panel. Launch Microsoft Visual C++ 6.0, add the required files, and enter the
following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex8.cpp.

//**
// PROGRAM FILE NAME:visaex8.cpp
//
// PROGRAM DESCRIPTION:In this example, instrument settings are saved in the signal
// generator’s registers and then recalled.
// Instrument settings can be recalled from the keyboard or, when the signal generator
// is put into Local control, from the front panel.
// This program will initialize the signal generator for an instrument state, store the
// state to register #1. An *RST command will reset the signal generator and a *RCL
// command will return it to the stored state. Following this remote operation the user
// will be instructed to place the signal generator in Local mode.
//
//**

#include <visa.h>
#include "StdAfx.h"
#include <iostream>
#include <conio.h>

void main ()
{
 ViSession defaultRM, vi; // Declares variables of type ViSession

// for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications
long lngDone = 0; // Operation complete flag

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session
// Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("\n");
viClear(vi); // Clears the signal generator
viPrintf(vi, "*CLS\n"); // Resets the status byte register
 // Print user information
printf("Programming example using the *SAV,*RCL SCPI commands\n");
Chapter 2 55

Programming Examples
GPIB Programming Examples
printf("used to save and recall an instrument’s state\n");
printf("\n");
viPrintf(vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "FREQ 5 MHz\n"); // Sets sig gen frequency
viPrintf(vi, "POW:ALC OFF\n"); // Turns ALC Off
viPrintf(vi, "POW:AMPL -3.2 dBm\n"); // Sets power for -3.2 dBm
viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output On
viPrintf(vi, "*OPC?\n"); // Checks for operation complete
while (!lngDone)
 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete
viPrintf(vi, "*SAV 1\n"); // Saves sig gen state to register #1
 // Print user information
printf("The current signal generator operating state will be saved\n");
printf("to Register #1. Observe the state then press Enter\n");
printf("\n"); // Prints new line character
getch(); // Wait for user input
lngDone=0; // Resets the operation complete flag
viPrintf(vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "*OPC?\n"); // Checks for operation complete
while (!lngDone)
 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete
 // Print user infromation
printf("The instrument is now in it’s Reset operating state. Press the\n");
printf("Enter key to return the signal generator to the Register #1

state\n");
printf("\n"); // Prints new line character
getch(); // Waits for user input
lngDone=0; // Reset the operation complete flag
viPrintf(vi, "*RCL 1\n"); // Recalls stored register #1 state
viPrintf(vi, "*OPC?\n"); // Checks for operation complete
while (!lngDone)
 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete
 // Print user information
printf("The signal generator has been returned to it’s Register #1

state\n");
printf("Press Enter to continue\n");
printf("\n"); // Prints new line character
getch(); // Waits for user input
lngDone=0; // Reset the operation complete flag
viPrintf(vi, "*RST\n"); // Resets the signal generator
viPrintf(vi, "*OPC?\n"); // Checks for operation complete
while (!lngDone)
 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete
 // Print user information
printf("Press Local on instrument front panel to return to manual mode\n");
printf("\n"); // Prints new line character
 // Close the sessions
viClose(vi);
viClose(defaultRM);

}

Chapter 256

Programming Examples
GPIB Programming Examples
Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is read. You will be
asked to set up the signal generator for error generating conditions. The data questionable
status register will be read and the program will notify the user of the error condition that the
setup caused. Follow the user prompts presented when the program runs. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex9.cpp.

//***
// PROGRAM NAME: visaex9.cpp
//
// PROGRAM DESCRIPTION:In this example, the data questionable status register is read.
// The data questionable status register is enabled to read an unleveled condition.
// The signal generator is then set up for an unleveled condition and the data
// questionable status register read. The results are then displayed to the user.
// The status questionable register is then setup to monitor a modulation error condition.
// The signal generator is set up for a modulation error condition and the data
// questionable status register is read.
// The results are displayed to the active window.
//
//***

#include <visa.h>
#include "StdAfx.h"
#include <iostream>
#include <conio.h>

void main ()
{

ViSession defaultRM, vi; // Declares a variables of type ViSession
 // for instrument communication
ViStatus viStatus = 0; // Declares a variable of type ViStatus

// for GPIB verifications
int num=0; // Declares a variable for switch statements

char rdBuffer[256]={0}; // Declare a variable for response data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session
 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("\n");
Chapter 2 57

Programming Examples
GPIB Programming Examples
viClear(vi); // Clears the signal generator
// Prints user information

printf("Programming example to demonstrate reading the signal generator’s
Status Byte\n");

printf("\n");
printf("Manually set up the sig gen for an unleveled output condition:\n");
printf("* Set signal generator output amplitude to +20 dBm\n");
printf("* Set frequency to maximum value\n");
printf("* Turn On signal generator’s RF Output\n");
printf("* Check signal generator’s display for the UNLEVEL annuniator\n");
printf("\n");
printf("Press Enter when ready\n");
printf("\n");
getch(); // Waits for keyboard user input
viPrintf(vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data Questionable
 // Power Condition Register Bits

// Bits ’0’ and ’1’
viPrintf(vi, "STAT:QUES:POW:COND?\n"); // Querys the register for any

// set bits
viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

 // set bits
num=(int (rdBuffer[1]) -(’0’)); // Converts string data to

 // numeric

switch (num) // Based on the decimal value
{

case 1:
printf("Signal Generator Reverse Power Protection

Tripped\n");
printf("/n");
break;

case 2:
printf("Signal Generator Power is Unleveled\n");
printf("\n");
break;

default:
printf("No Power Unleveled condition detected\n");
printf("\n");

}
viClear(vi); // Clears the signal generator
 // Prints user information
printf("--\n");
printf("\n");
printf("Manually set up the sig gen for an unleveled output condition:\n");
printf("\n");
printf("* Select AM modulation\n");
printf("* Select AM Source Ext 1 and Ext Coupling AC\n");
printf("* Turn On the modulation.\n");
printf("* Do not connect any source to the input\n");
printf("* Check signal generator’s display for the EXT1 LO annunciator\n");
printf("\n");
Chapter 258

Programming Examples
GPIB Programming Examples
printf("Press Enter when ready\n");
printf("\n");
getch(); // Waits for keyboard user input
viPrintf(vi, "STAT:QUES:MOD:ENAB 16\n"); // Enables the Data Questionable
 // Modulation Condition Register

// bits ’0’,’1’,’2’,’3’ and ’4’
 viPrintf(vi, "STAT:QUES:MOD:COND?\n"); // Querys the register for any

// set bits
 viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

// set bits
num=(int (rdBuffer[1]) -(’0’)); // Converts string data to numeric

switch (num) // Based on the decimal value
{

case 1:
printf("Signal Generator Modulation 1 Undermod\n");
printf("\n");
break;

case 2:
printf("Signal Generator Modulation 1 Overmod\n");
printf("\n");
break;

case 4:
printf("Signal Generator Modulation 2 Undermod\n");
printf("\n");
break;

case 8:
printf("Signal Generator Modulation 2 Overmod\n");
printf("\n");
break;

case 16:
printf("Signal Generator Modulation Uncalibrated\n");
printf("\n");
break;

default:
printf("No Problems with Modulation\n");
printf("\n");

}
// Close the sessions

viClose(vi);
viClose(defaultRM);

}

Chapter 2 59

Programming Examples
GPIB Programming Examples
Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ,
the computer can attend to other tasks while the signal generator is busy performing a
function or operation. When the signal generator finishes it’s operation, or detects a failure,
then a Service Request can be generated. The computer will respond to the SRQ and,
depending on the code, can perform some other operation or notify the user of failures or other
conditions.

This program sets up a step sweep function for the signal generator and, while the operation
is in progress, prints out a series of asterisks. When the step sweep operation is complete, an
SRQ is generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into
your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
visaex10.cpp.

//**
//
// PROGRAM FILE NAME:visaex10.cpp
//
// PROGRAM DESCRIPTION: This example demonstrates the use of a Service Request (SRQ)
// interrupt. The program sets up conditions to enable the SRQ and then sets the signal
// generator for a step mode sweep. The program will enter a printing loop which prints
// an * character and ends when the sweep has completed and an SRQ received.
//
//**

#include "visa.h"
#include <stdio.h>
#include "StdAfx.h"
#include "windows.h"
#include <conio.h>

#define MAX_CNT 1024

int sweep=1; // End of sweeep flag

/* Prototypes */

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr);

int main ()
{

ViSession defaultRM, vi; // Declares variables of type ViSession
// for instrument communication
Chapter 260

Programming Examples
GPIB Programming Examples
ViStatus viStatus = 0; // Declares a variable of type ViStatus
 // for GPIB verifications
char rdBuffer[MAX_CNT]; // Declare a block of memory data

viStatus=viOpenDefaultRM(&defaultRM);// Initialize VISA session
if(viStatus < VI_SUCCESS){ // If problems, then prompt user

printf("ERROR initializing VISA... exiting\n");
printf("\n");

return -1; }
 // Open session to gpib device at address 19
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
if(viStatus){ // If problems then prompt user

printf("ERROR: Could not open communication with
instrument\n");

printf("\n");
return -1; }

viClear(vi); // Clears the signal generator
viPrintf(vi, "*RST\n"); // Resets signal generator
 // Print program header and information
printf("** End of Sweep Service Request **\n");
printf("\n");
printf("The signal generator will be set up for a step sweep mode

 operation.\n");
printf("An ’*’ will be printed while the instrument is sweeping. The end of

 \n");
printf("sweep will be indicated by an SRQ on the GPIB and the program will

end.\n");
printf("\n");
printf("Press Enter to continue\n");
printf("\n");
getch();

viPrintf(vi, "*CLS\n"); // Clears signal generator status byte
viPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status Group

// Negative Transition Filter to indicate a
// negative transition in Bit 3 (Sweeping)
// which will set a corresponding event in
// the Operation Event Register. This occurs
// at the end of a sweep.

viPrintf(vi, "STAT:OPER:PTR 0\n");// Sets the Operation Status Group
// Positive Transition Filter so that no
// positive transition on Bit 3 affects the
// Operation Event Register. The positive
// transition occurs at the start of a sweep.

viPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3
// to report the event to Status Byte
// Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n"); // Enables Status Byte Register Summary Bit 7
// The next line of code indicates the
// function to call on an event
Chapter 2 61

Programming Examples
GPIB Programming Examples
viStatus = viInstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt, rdBuffer);
// The next line of code enables the
// detection of an event

viStatus = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

viPrintf(vi, "FREQ:MODE LIST\n");// Sets frequency mode to list
viPrintf(vi, "LIST:TYPE STEP\n");// Sets sweep to step
viPrintf(vi, "LIST:TRIG:SOUR IMM\n");// Immediately trigger the sweep
viPrintf(vi, "LIST:MODE AUTO\n");// Sets mode for the list sweep
viPrintf(vi, "FREQ:STAR 40 MHZ\n"); // Start frequency set to 40 MHz
viPrintf(vi, "FREQ:STOP 900 MHZ\n");// Stop frequency set to 900 MHz
viPrintf(vi, "SWE:POIN 25\n");// Set number of points for the step sweep
viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point
viPrintf(vi, "INIT:CONT OFF\n");// Set up for single sweep
viPrintf(vi, "TRIG:SOUR IMM\n");// Triggers the sweep
viPrintf(vi, "INIT\n"); // Takes a single sweep
printf("\n");

// While the instrument is sweeping have the
// program busy with printing to the display.
// The Sleep function, defined in the header
// file windows.h, will pause the program
// operation for .5 seconds

while (sweep==1){
printf("*");
Sleep(500);}

printf("\n");
// The following lines of code will stop the
// events and close down the session

viStatus = viDisableEvent(vi, VI_ALL_ENABLED_EVENTS,VI_ALL_MECH);
viStatus = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt,

rdBuffer);
viStatus = viClose(vi);
viStatus = viClose(defaultRM);
return 0;

}

// The following function is called when an SRQ event occurs. Code specific to your
// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr

addr)
{

ViStatus status;
ViUInt16 stb;

 status = viReadSTB(vi, &stb); // Reads the Status Byte
sweep=0; // Sets the flag to stop the ’*’ printing
printf("\n"); // Print user information
printf("An SRQ, indicating end of sweep has occurred\n");
Chapter 262

Programming Examples
GPIB Programming Examples
viClose(event); // Closes the event
return VI_SUCCESS;

}

Chapter 2 63

Programming Examples
LAN Programming Examples
LAN Programming Examples

• “VXI-11 Programming Using SICL and C” on page 65

• “VXI-11 Programming Using VISA and C” on page 66

• “Setting Parameters and Sending Queries Using Sockets and C” on page 72

• “Setting the Power Level and Sending Queries Using PERL” on page 89

• “Generating a CW Signal Using Java” on page 91

The LAN programming examples in this section demonstrate the use of VXI-11 and Sockets
LAN to control the signal generator. For details on using FTP and TELNET refer to “Using
FTP” on page 25 and “Using TELNET LAN” on page 21 of this guide.

Before Using the Examples

To use these programming examples you must change references to the IP address and
hostname to match the IP address and hostname of your signal generator.
Chapter 264

Programming Examples
LAN Programming Examples
VXI-11 Programing

The signal generator supports the VXI-11 standard for instrument communication over the
LAN interface. Agilent IO Libraries support the VXI-11 standard and must be installed on
your computer before using the VXI-11 protocol. Refer to “Using VXI-11” on page 18 of this
Programming Guide for information on configuring and using the VXI-11 protocol.

The VXI-11 examples use TCPIP0 as the board address.

VXI-11 Programming Using SICL and C

The following program uses the VXI-11 protocol and SICL to control the signal generator. The
signal generator is set to a 1 GHz CW frequency and then queried for its ID string. Before
running this code, you must set up the interface using the Agilent IO Libraries IO Config
utility.

The following program example is available on the ESG Documentation CD-ROM as
vxisicl.cpp.

//**
//
// PROGRAM NAME: vxisicl.cpp
//
// PROGRAM DESCRIPTION:Sample test program using SICL and the VXI-11 protocol
//
// NOTE: You must have the Agilent IO Libraries installed to run this program.
//
// This example uses the VXI-11 protocol to set the signal generator for a 1 gHz CW
// frequency. The signal generator is queried for operation complete and then queried
// for its ID string. The frequency and ID string are then printed to the display.
//
// IMPORTANT: Enter in your signal generators hostname in the instrumentName declaration
// where the "xxxxx" appears.
//
//**

#include "stdafx.h"
#include <sicl.h>
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char* argv[])
{

INST id; // Device session id
int opcResponse; // Variable for response flag

char instrumentName[] = "xxxxx"; // Put your instrument’s hostname here
char instNameBuf[256]; // Variable to hold instrument name
Chapter 2 65

Programming Examples
LAN Programming Examples
char buf[256]; // Variable for id string
ionerror(I_ERROR_EXIT); // Register SICL error handler

 // Open SICL instrument handle using VXI-11 protocol

sprintf(instNameBuf, "lan[%s]:inst0", instrumentName);
id = iopen(instNameBuf); // Open instrument session
itimeout(id, 1000); // Set 1 second timeout for operations
printf("Setting frequency to 1 Ghz...\n");
iprintf(id, "freq 1 GHz\n"); // Set frequency to 1 GHz

printf("Waiting for source to settle...\n");
iprintf(id, "*opc?\n"); // Query for operation complete
iscanf(id, "%d", &opcResponse); // Operation complete flag
if (opcResponse != 1) // If operation fails, prompt user
{

printf("Bad response to ’OPC?’\n");
iclose(id);
exit(1);

}
iprintf(id, "FREQ?\n"); // Query the frequency
iscanf(id, "%t", &buf); // Read the signal generator frequency
printf("\n"); // Print the frequency to the display
printf("Frequency of signal generator is %s\n", buf);
ipromptf(id, "*IDN?\n", "%t", buf);// Query for id string
printf("Instrument ID: %s\n", buf);// Print id string to display
iclose(id); // Close the session

return 0;
}

VXI-11 Programming Using VISA and C

The following program uses the VXI-11 protocol and the VISA library to control the signal
generator. The signal generator is set to a 1 GHz CW frequency and queried for its ID string.
Before running this code, you must set up the interface using the Agilent IO Libraries IO
Config utility.

The following program example is available on the ESG Documentation CD-ROM as
vxivisa.cpp.

//**
// PROGRAM FILE NAME:vxivisa.cpp
// Sample test program using the VISA libraries and the VXI-11 protocol
//
// NOTE: You must have the Agilent Libraries installed on your computer to run
// this program
//
// PROGRAM DESCRIPTION:This example uses the VXI-11 protocol and VISA to query
// the signal generator for its ID string. The ID string is then printed to the
Chapter 266

Programming Examples
LAN Programming Examples
// screen. Next the signal generator is set for a -5 dBm power level and then
// queried for the power level. The power level is printed to the screen.
//
// IMPORTANT: Set up the LAN Client using the IO Config utility
//
//**

#include <visa.h>
#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>
#include <conio.h>

#define MAX_COUNT 200

int main (void)

{

ViStatus status; // Declares a type ViStatus variable
ViSession defaultRM, instr; // Declares a type ViSession variable
ViUInt32 retCount; // Return count for string I/O
ViChar buffer[MAX_COUNT]; // Buffer for string I/O

status = viOpenDefaultRM(&defaultRM); // Initialize the system
 // Open communication with Serial
 // Port 2
status = viOpen(defaultRM, "TPCIP0::19::INSTR", VI_NULL, VI_NULL, &instr);

if(status){ // If problems then prompt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

 // Set timeout for 5 seconds
viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);
 // Ask for sig gen ID string

 status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

 // Read the sig gen response
 status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= ’\0’; // Indicate the end of the string
printf("Signal Generator ID = "); // Print header for ID
printf(buffer); // Print the ID string
printf("\n"); // Print carriage return
 // Flush the read buffer
 // Set sig gen power to -5dbm
status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);
 // Query the power level
status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);
 // Read the power level
Chapter 2 67

Programming Examples
LAN Programming Examples
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= ’\0’; // Indicate the end of the string
printf("Power level = "); // Print header to the screen
printf(buffer); // Print the queried power level
printf("\n");
status = viClose(instr); // Close down the system
status = viClose(defaultRM);
return 0;

}

Chapter 268

Programming Examples
LAN Programming Examples
Sockets LAN Programming using C

The program listing shown in “Setting Parameters and Sending Queries Using Sockets and C”
on page 72 consists of two files; lanio.c and getopt.c. The lanio.c file has two main functions;
int main() and an int main1().

The int main() function allows communication with the signal generator interactively from
the command line. The program reads the signal generator's hostname from the command
line, followed by the SCPI command. It then opens a socket to the signal generator, using port
5025, and sends the command. If the command appears to be a query, the program queries the
signal generator for a response, and prints the response.

The int main1(), after renaming to int main(), will output a sequence of commands to the
signal generator. You can use the format as a template and then add your own code.

This program is available on the ESG Documentation CD-ROM as lanio.c

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only
difference is the openSocket() routine, which uses a few network library routines to create the
TCP/IP network connection. Once this connection is created, the standard fread() and fwrite()
routines are used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example,
/users/mydir/.

2. At the UNIX prompt in your home directory type: cc -Aa -O -o lanio lanio.c

3. At the UNIX prompt in your home directory type: ./lanio xxxxx “*IDN?” where
xxxxx is the hostname for the signal generator. Use this same format to output SCPI
commands to the signal generator.

The int main1() function will output a sequence of commands in a program format. If you
want to run a program using a sequence of commands then perform the following:

1. Rename the lanio.c int main1() to int main() and the original int main() to int
main1().

2. In the main() , openSocket() function, change the “your hostname here” string to the
hostname of the signal generator you want to control.

3. Resave the lanio.c program

4. At the UNIX prompt type: cc -Aa -O -o lanio lanio.c

5. At the UNIX prompt type: ./lanio
Chapter 2 69

Programming Examples
LAN Programming Examples
The program will run and output a sequence of SCPI commands to the signal generator. The
UNIX display will show a display similar to the following:

unix machine: /users/mydir
$./lanio
ID: Agilent Technologies, E4438C, US70000001, C.02.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not
work on sockets. The following steps outline the process for running the interactive program
in the Microsoft Visual C++ 6.0 environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source
folder of the Visual C++ project.

NOTE The int main() function in the lanio.cpp file will allow commands to be sent to
the signal generator in a line-by-line format; the user types in SCPI commands.
The int main1(0) function can be used to output a sequence of commands in a
“program format.” See Programming Using main1() Function. below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will
appear with a prompt “Press any key to continue.” This indicates that the program has
compiled and can be used to send commands to the signal generator.

3. Click Start, click Programs, then click Command Prompt. The command prompt window will
appear.

4. At the command prompt, cd to the directory containing the lanio.exe file and then to the
Debug folder. For example C:\SocketIO\Lanio\Debug.

5. After you cd to the directory where the lanio.exe file is located, type in the following
command at the command prompt: lanio xxxxx “*IDN?” . For example:
C:\SocketIO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of
your signal generator. Use this format to output SCPI commands to the signal generator in
a line by line format from the command prompt.

6. Type exit at the command prompt to quit the program.
Chapter 270

Programming Examples
LAN Programming Examples
Programming Using main1() Function. The int main1() function will output a
sequence of commands in a program format. If you want to run a program using a sequence of
commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the main1()
function of the lanio.cpp program.

2. Rename the lanio.cpp int main1() function to int main() and the original int main()
function to int main1().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-1.

Figure 2-1 Program Output Screen
Chapter 2 71

Programming Examples
LAN Programming Examples
Setting Parameters and Sending Queries Using Sockets and C

The following programming examples are available on the ESG Documentation CD-ROM as
lanio.c and getopt.c.

 /***
 * $Header: lanio.c 04/24/01
 * $Revision: 1.1 $
 * $Date: 10/24/01
 * PROGRAM NAME: lanio.c
 *
 * $Description: Functions to talk to an Agilent signal generator
 * via TCP/IP. Uses command-line arguments.
 *
 * A TCP/IP connection to port 5025 is established and
 * the resultant file descriptor is used to "talk" to the
 * instrument using regular socket I/O mechanisms. $
 *
 *
 *
 * Examples:
 *
 * Query the signal generator frequency:
 * lanio xx.xxx.xx.x ’FREQ?’
 *
 * Query the signal generator power level:
 * lanio xx.xxx.xx.x ’POW?’
 *
 * Check for errors (gets one error):
 * lanio xx.xxx.xx.x ’syst:err?’
 *
 * Send a list of commands from a file, and number them:
 * cat scpi_cmds | lanio -n xx.xxx.xx.x
 *
 **
 *
 * This program compiles and runs under
 * - HP-UX 10.20 (UNIX), using HP cc or gcc:
 * + cc -Aa -O -o lanio lanio.c
 * + gcc -Wall -O -o lanio lanio.c
 *
 * - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition
 * - Windows NT 3.51, using Microsoft Visual C++ 4.0
 * + Be sure to add WSOCK32.LIB to your list of libraries!
 * + Compile both lanio.c and getopt.c
 * + Consider re-naming the files to lanio.cpp and getopt.cpp
 *
 * Considerations:
 * - On UNIX systems, file I/O can be used on network sockets.
 * This makes programming very convenient, since routines like
 * getc(), fgets(), fscanf() and fprintf() can be used. These
Chapter 272

Programming Examples
LAN Programming Examples
 * routines typically use the lower level read() and write() calls.
 *
 * - In the Windows environment, file operations such as read(), write(),
 * and close() cannot be assumed to work correctly when applied to
 * sockets. Instead, the functions send() and recv() MUST be used.
 ***/

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */
define WINSOCK
#endif

#ifndef WINSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE
endif
#endif

#include <stdio.h> /* for fprintf and NULL */
#include <string.h> /* for memcpy and memset */
#include <stdlib.h> /* for malloc(), atol() */
#include <errno.h> /* for strerror */

#ifdef WINSOCK

#include <windows.h>

ifndef _WINSOCKAPI_
include <winsock.h> // BSD-style socket functions
endif

#else /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */
include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)
define INVALID_SOCKET (-1)

 typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK
 /* Declared in getopt.c. See example programs disk. */
 extern char *optarg;
 extern int optind;
 extern int getopt(int argc, char * const argv[], const char* optstring);
#else
Chapter 2 73

Programming Examples
LAN Programming Examples
include <unistd.h> /* for getopt(3C) */
#endif

#define COMMAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025
#define INPUT_BUF_SIZE (64*1024)

/**
 * Display usage
 **/
static void usage(char *basename)
{
 fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]\n", basename);
 fprintf(stderr," %s [-nqu] <hostname> < stdin\n", basename);
 fprintf(stderr," -n, number output lines\n");
 fprintf(stderr," -q, quiet; do NOT echo lines\n");
 fprintf(stderr," -e, show messages in error queue when done\n");
}

#ifdef WINSOCK
int init_winsock(void)
{
 WORD wVersionRequested;
 WSADATA wsaData;
 int err;
 wVersionRequested = MAKEWORD(1, 1);
 wVersionRequested = MAKEWORD(2, 0);

 err = WSAStartup(wVersionRequested, &wsaData);

 if (err != 0) {
 /* Tell the user that we couldn’t find a useable */
 /* winsock.dll. */
 fprintf(stderr, "Cannot initialize Winsock 1.1.\n");
 return -1;
 }
 return 0;
}

int close_winsock(void)
{
 WSACleanup();
 return 0;
}
#endif /* WINSOCK */
Chapter 274

Programming Examples
LAN Programming Examples
/***
 *
 > $Function: openSocket$
 *
 * $Description: open a TCP/IP socket connection to the instrument $
 *
 * $Parameters: $
 * (const char *) hostname Network name of instrument.
 * This can be in dotted decimal notation.
 * (int) portNumber The TCP/IP port to talk to.
 * Use 5025 for the SCPI port.
 *
 * $Return: (int) A file descriptor similar to open(1).$
 *
 * $Errors: returns -1 if anything goes wrong $
 *
 ***/
SOCKET openSocket(const char *hostname, int portNumber)
{
 struct hostent *hostPtr;
 struct sockaddr_in peeraddr_in;
 SOCKET s;

 memset(&peeraddr_in, 0, sizeof(struct sockaddr_in));

 /***/
 /* map the desired host name to internal form. */
 /***/
 hostPtr = gethostbyname(hostname);
 if (hostPtr == NULL)
 {
 fprintf(stderr,"unable to resolve hostname ’%s’\n", hostname);
 return INVALID_SOCKET;
 }

 /*******************/
 /* create a socket */
 /*******************/
 s = socket(AF_INET, SOCK_STREAM, 0);
 if (s == INVALID_SOCKET)
 {
 fprintf(stderr,"unable to create socket to ’%s’: %s\n",
 hostname, strerror(errno));
 return INVALID_SOCKET;
 }

 memcpy(&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);
Chapter 2 75

Programming Examples
LAN Programming Examples
 peeraddr_in.sin_family = AF_INET;
 peeraddr_in.sin_port = htons((unsigned short)portNumber);

 if (connect(s, (const struct sockaddr*)&peeraddr_in,
 sizeof(struct sockaddr_in)) == SOCKET_ERROR)
 {
 fprintf(stderr,"unable to create socket to ’%s’: %s\n",
 hostname, strerror(errno));
 return INVALID_SOCKET;
 }

 return s;
}

/***
 *
 > $Function: commandInstrument$
 *
 * $Description: send a SCPI command to the instrument.$
 *
 * $Parameters: $
 * (FILE *) file pointer associated with TCP/IP socket.
 * (const char *command) . . SCPI command string.
 * $Return: (char *) a pointer to the result string.
 *
 * $Errors: returns 0 if send fails $
 *
 ***/
int commandInstrument(SOCKET sock,
 const char *command)
{
 int count;

 /* fprintf(stderr, "Sending \"%s\".\n", command); */
 if (strchr(command, ’\n’) == NULL) {
 fprintf(stderr, "Warning: missing newline on command %s.\n", command);
 }

 count = send(sock, command, strlen(command), 0);
 if (count == SOCKET_ERROR) {
 return COMMAND_ERROR;
 }

 return NO_CMD_ERROR;
}

/**
 * recv_line(): similar to fgets(), but uses recv()
Chapter 276

Programming Examples
LAN Programming Examples
 **/
char * recv_line(SOCKET sock, char * result, int maxLength)
{
#ifdef WINSOCK
 int cur_length = 0;
 int count;
 char * ptr = result;
 int err = 1;

 while (cur_length < maxLength) {
 /* Get a byte into ptr */
 count = recv(sock, ptr, 1, 0);

 /* If no chars to read, stop. */
 if (count < 1) {
 break;
 }
 cur_length += count;

 /* If we hit a newline, stop. */
 if (*ptr == ’\n’) {
 ptr++;
 err = 0;
 break;
 }
 ptr++;

 }

 *ptr = ’\0’;

 if (err) {
 return NULL;
 } else {
 return result;
 }
#else
 /***
 * Simpler UNIX version, using file I/O. recv() version works too.
 * This demonstrates how to use file I/O on sockets, in UNIX.
 ***/
 FILE * instFile;
 instFile = fdopen(sock, "r+");
 if (instFile == NULL)
 {
 fprintf(stderr, "Unable to create FILE * structure : %s\n",
 strerror(errno));
 exit(2);
 }
 return fgets(result, maxLength, instFile);
#endif
Chapter 2 77

Programming Examples
LAN Programming Examples
}

/***
 *
 > $Function: queryInstrument$
 *
 * $Description: send a SCPI command to the instrument, return a response.$
 *
 * $Parameters: $
 * (FILE *) file pointer associated with TCP/IP socket.
 * (const char *command) . . SCPI command string.
 * (char *result) where to put the result.
 * (size_t) maxLength maximum size of result array in bytes.
 *
 * $Return: (long) The number of bytes in result buffer.
 *
 * $Errors: returns 0 if anything goes wrong. $
 *
 ***/
long queryInstrument(SOCKET sock,
 const char *command, char *result, size_t maxLength)
{
 long ch;
 char tmp_buf[8];
 long resultBytes = 0;
 int command_err;
 int count;

 /***
 * Send command to signal generator
 ***/
 command_err = commandInstrument(sock, command);
 if (command_err) return COMMAND_ERROR;

 /***
 * Read response from signal generator
 **/
 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF) || (ch == ’\n’))
 {
 result = ’\0’; / null terminate result for ascii */
 return 0;
 }

 /* use a do-while so we can break out */
 do
Chapter 278

Programming Examples
LAN Programming Examples
 {
 if (ch == ’#’)
 {
 /* binary data encountered - figure out what it is */
 long numDigits;
 long numBytes = 0;
 /* char length[10]; */

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */
 ch = tmp_buf[0];
 if ((count < 1) || (ch == EOF)) break; /* End of file */

 if (ch < ’0’ || ch > ’9’) break; /* unexpected char */
 numDigits = ch - ’0’;

 if (numDigits)
 {
 /* read numDigits bytes into result string. */
 count = recv(sock, result, (int)numDigits, 0);
 result[count] = 0; /* null terminate */
 numBytes = atol(result);
 }

 if (numBytes)
 {
 resultBytes = 0;
 /* Loop until we get all the bytes we requested. */
 /* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */
 do {
 int rcount;
 rcount = recv(sock, result, (int)numBytes, 0);
 resultBytes += rcount;
 result += rcount; /* Advance pointer */
 } while (resultBytes < numBytes);

 /**
 * For LAN dumps, there is always an extra trailing newline
 * Since there is no EOI line. For ASCII dumps this is
 * great but for binary dumps, it is not needed.
 ***/
 if (resultBytes == numBytes)
 {
 char junk;
 count = recv(sock, &junk, 1, 0);
 }
 }
 else
 {
 /* indefinite block ... dump til we can an extra line feed */
 do
 {
Chapter 2 79

Programming Examples
LAN Programming Examples
 if (recv_line(sock, result, maxLength) == NULL) break;
 if (strlen(result)==1 && *result == ’\n’) break;
 resultBytes += strlen(result);
 result += strlen(result);
 } while (1);
 }
 }
 else
 {
 /* ASCII response (not a binary block) */
 *result = (char)ch;
 if (recv_line(sock, result+1, maxLength-1) == NULL) return 0;

 /* REMOVE trailing newline, if present. And terminate string. */
 resultBytes = strlen(result);
 if (result[resultBytes-1] == ’\n’) resultBytes -= 1;
 result[resultBytes] = ’\0’;
 }
 } while (0);

 return resultBytes;
}

/***
 *
 > $Function: showErrors$
 *
 * $Description: Query the SCPI error queue, until empty. Print results. $
 *
 * $Return: (void)
 *
 ***/
void showErrors(SOCKET sock)
{
 const char * command = "SYST:ERR?\n";
 char result_str[256];

 do {
 queryInstrument(sock, command, result_str, sizeof(result_str)-1);

 /**
 * Typical result_str:
 * -221,"Settings conflict; Frequency span reduced."
 * +0,"No error"
 * Don’t bother decoding.
 **/
 if (strncmp(result_str, "+0,", 3) == 0) {
 /* Matched +0,"No error" */
Chapter 280

Programming Examples
LAN Programming Examples
 break;
 }
 puts(result_str);
 } while (1);

}

/***
 *
 > $Function: isQuery$
 *
 * $Description: Test current SCPI command to see if it a query. $
 *
 * $Return: (unsigned char) . . . non-zero if command is a query. 0 if not.
 *
 ***/
unsigned char isQuery(char* cmd)
{
 unsigned char q = 0 ;
 char *query ;

 /***/
 /* if the command has a ’?’ in it, use queryInstrument. */
 /* otherwise, simply send the command. */
 /* Actually, we must be a more specific so that */
 /* marker value querys are treated as commands. */
 /* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */
 /***/
 if ((query = strchr(cmd,’?’)) != NULL)
 {
 /* Make sure we don’t have a marker value query, or
 * any command with a ’?’ followed by a ’)’ character.
 * This kind of command is not a query from our point of view.
 * The signal generator does the query internally, and uses the result.
 */
 query++ ; /* bump past ’?’ */
 while (*query)
 {
 if (*query == ’ ’) /* attempt to ignore white spc */
 query++ ;
 else break ;
 }

 if (*query != ’)’)
 {
 q = 1 ;
 }
 }
 return q ;
}

Chapter 2 81

Programming Examples
LAN Programming Examples
/***
 *
 > $Function: main$
 *
 * $Description: Read command line arguments, and talk to signal generator.
 Send query results to stdout. $
 *
 * $Return: (int) . . . non-zero if an error occurs
 *
 ***/

int main(int argc, char *argv[])
{

 SOCKET instSock;
 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);
 char *basename;
 int chr;
 char command[1024];
 char *destination;
 unsigned char quiet = 0;
 unsigned char show_errs = 0;
 int number = 0;

 basename = strrchr(argv[0], ’/’);
 if (basename != NULL)
 basename++ ;
 else
 basename = argv[0];

 while ((chr = getopt(argc,argv,"qune")) != EOF)
 switch (chr)
 {
 case ’q’: quiet = 1; break;
 case ’n’: number = 1; break ;
 case ’e’: show_errs = 1; break ;
 case ’u’:
 case ’?’: usage(basename); exit(1) ;
 }

 /* now look for hostname and optional <command>*/
 if (optind < argc)
 {
 destination = argv[optind++] ;
 strcpy(command, "");
 if (optind < argc)
 {
 while (optind < argc) {
 /* <hostname> <command> provided; only one command string */
 strcat(command, argv[optind++]);
Chapter 282

Programming Examples
LAN Programming Examples
 if (optind < argc) {
 strcat(command, " ");
 } else {
 strcat(command, "\n");
 }
 }
 }
 else
 {
 /*Only <hostname> provided; input on <stdin> */
 strcpy(command, "");

 if (optind > argc)
 {
 usage(basename);
 exit(1);
 }
 }
 }
 else
 {
 /* no hostname! */
 usage(basename);
 exit(1);
 }

 /**
 /* open a socket connection to the instrument
 /**/

#ifdef WINSOCK
 if (init_winsock() != 0) {
 exit(1);
 }
#endif /* WINSOCK */

 instSock = openSocket(destination, SCPI_PORT);
 if (instSock == INVALID_SOCKET) {
 fprintf(stderr, "Unable to open socket.\n");
 return 1;
 }
 /* fprintf(stderr, "Socket opened.\n"); */

 if (strlen(command) > 0)
 {
 /***
 /* if the command has a ’?’ in it, use queryInstrument. */
 /* otherwise, simply send the command. */
 /***/
 if (isQuery(command))
 {
Chapter 2 83

Programming Examples
LAN Programming Examples
 long bufBytes;
 bufBytes = queryInstrument(instSock, command,
 charBuf, INPUT_BUF_SIZE);
 if (!quiet)
 {
 fwrite(charBuf, bufBytes, 1, stdout);
 fwrite("\n", 1, 1, stdout) ;
 fflush(stdout);
 }
 }
 else
 {
 commandInstrument(instSock, command);
 }
 }
 else
 {
 /* read a line from <stdin> */
 while (gets(charBuf) != NULL)
 {
 if (!strlen(charBuf))
 continue ;

 if (*charBuf == ’#’ || *charBuf == ’!’)
 continue ;

 strcat(charBuf, "\n");

 if (!quiet)
 {
 if (number)
 {
 char num[10];
 sprintf(num,"%d: ",number);
 fwrite(num, strlen(num), 1, stdout);
 }
 fwrite(charBuf, strlen(charBuf), 1, stdout) ;
 fflush(stdout);
 }

 if (isQuery(charBuf))
 {
 long bufBytes;

 /* Put the query response into the same buffer as the*/
 /* command string appended after the null terminator.*/

 bufBytes = queryInstrument(instSock, charBuf,
 charBuf + strlen(charBuf) + 1,
 INPUT_BUF_SIZE -strlen(charBuf));
 if (!quiet)
Chapter 284

Programming Examples
LAN Programming Examples
 {
 fwrite(" ", 2, 1, stdout) ;
 fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);
 fwrite("\n", 1, 1, stdout) ;
 fflush(stdout);
 }
 }
 else
 {
 commandInstrument(instSock, charBuf);
 }
 if (number) number++;
 }
 }

 if (show_errs) {
 showErrors(instSock);
 }

#ifdef WINSOCK
 closesocket(instSock);
 close_winsock();
#else
 close(instSock);
#endif /* WINSOCK */

 return 0;
}

/* End of lanio.cpp *

/**/
/* $Function: main1$ */
/* $Description: Output a series of SCPI commands to the signal generator */
/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */
/**/
/* Rename this int main1() function to int main(). Re-compile and the */
/* execute the program */
/**/

int main1()
{

SOCKET instSock;
long bufBytes;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);
Chapter 2 85

Programming Examples
LAN Programming Examples

 /***/
 /* open a socket connection to the instrument*/
 /***/

#ifdef WINSOCK
 if (init_winsock() != 0) {
 exit(1);
 }
#endif /* WINSOCK */

 instSock = openSocket("xxxxxx", SCPI_PORT); /* Put your hostname here */
 if (instSock == INVALID_SOCKET) {
 fprintf(stderr, "Unable to open socket.\n");
 return 1;
 }
 /* fprintf(stderr, "Socket opened.\n"); */

 bufBytes = queryInstrument(instSock, "*IDN?\n", charBuf, INPUT_BUF_SIZE);
 printf("ID: %s\n",charBuf);
 commandInstrument(instSock, "FREQ 2.5 GHz\n");
 printf("\n");
 bufBytes = queryInstrument(instSock, "FREQ:CW?\n", charBuf, INPUT_BUF_SIZE);
 printf("Frequency: %s\n",charBuf);
 commandInstrument(instSock, "POW:AMPL -5 dBm\n");
 bufBytes = queryInstrument(instSock, "POW:AMPL?\n", charBuf, INPUT_BUF_SIZE);
 printf("Power Level: %s\n",charBuf);
 printf("\n");

#ifdef WINSOCK
 closesocket(instSock);
 close_winsock();
#else
 close(instSock);
#endif /* WINSOCK */

 return 0;
}
/***

 getopt(3C) getopt(3C)

PROGRAM FILE NAME: getopt.c
getopt - get option letter from argument vector

 SYNOPSIS
 int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;
 extern int optind, opterr, optopt;
Chapter 286

Programming Examples
LAN Programming Examples
 PRORGAM DESCRIPTION:
 getopt returns the next option letter in argv (starting from argv[1])
 that matches a letter in optstring. optstring is a string of
 recognized option letters; if a letter is followed by a colon, the
 option is expected to have an argument that may or may not be
 separated from it by white space. optarg is set to point to the start
 of the option argument on return from getopt.

 getopt places in optind the argv index of the next argument to be
 processed. The external variable optind is initialized to 1 before
 the first call to the function getopt.

 When all options have been processed (i.e., up to the first non-option
 argument), getopt returns EOF. The special option -- can be used to
 delimit the end of the options; EOF is returned, and -- is skipped.

 ***/

#include <stdio.h> /* For NULL, EOF */
#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */
int optind = 0; /* Global argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)
{
 char c;
 char *posn;

 optarg = NULL;

 if (scan == NULL || *scan == ’\0’) {
 if (optind == 0)
 optind++;

 if (optind >= argc || argv[optind][0] != ’-’ || argv[optind][1] == ’\0’)
 return(EOF);
 if (strcmp(argv[optind], "--")==0) {
 optind++;
 return(EOF);
 }

 scan = argv[optind]+1;
 optind++;
 }

 c = *scan++;
Chapter 2 87

Programming Examples
LAN Programming Examples
 posn = strchr(optstring, c); /* DDP */

 if (posn == NULL || c == ’:’) {
 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);
 return(’?’);
 }

 posn++;
 if (*posn == ’:’) {
 if (*scan != ’\0’) {
 optarg = scan;
 scan = NULL;
 } else {
 optarg = argv[optind];
 optind++;
 }
 }

 return(c);
}

Chapter 288

Programming Examples
LAN Programming Examples
Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface.
The signal generator frequency is set to 1 Ghz, queried for operation complete and then
queried for it’s identify string. This example was developed using PERL version 5.6.0 and
requires a PERL version with the IO::Socket library.

1. In the code below, enter your signal generator’s hostname in place of the xxxxx in the code
line: my $instrumentName= “xxxxx”; .

2. Save the code listed below using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the ESG Documentation CD-ROM as perl.txt.

#!/usr/bin/perl
PROGRAM NAME: perl.txt
Example of talking to the signal generator via SCPI-over-sockets

use IO::Socket;
Change to your instrument’s hostname
my $instrumentName = "xxxxx";

Get socket
$sock = new IO::Socket::INET (PeerAddr => $instrumentName,
 PeerPort => 5025,
 Proto => ’tcp’,
);
die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

Wait for completion
print "Waiting for source to settle...\n";
print $sock "*opc?\n";
my $response = <$sock>;
chomp $response; # Removes newline from response
if ($response ne "1")
{
 die "Bad response to ’*OPC?’ from instrument!\n";
}

Send identification query
print $sock "*IDN?\n";
$response = <$sock>;
Chapter 2 89

Programming Examples
LAN Programming Examples
chomp $response;
print "Instrument ID: $response\n";
Chapter 290

Programming Examples
LAN Programming Examples
Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator via sockets LAN. This
program requires Java version 1.1 or later be installed on your PC. To run the program
perform the following steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For
example, String instrumentName = (your signal generator’s hostname).

2. Copy the program as ScpiSockTest.java and save it in a convenient directory on your
computer. For example save the file to the C:\jdk1.3.0_2\bin\javac directory.

3. Launch the Command Prompt program on your computer. Click Start > Programs >
Command Prompt.

4. Compile the program. At the command prompt type: javac ScpiSockTest.java.
The directory path for the Java compiler must be specified. For example:
C:\>jdk1.3.0_02\bin\javac ScpiSockTest.java

5. Run the program by typing java ScpiSockTest at the command prompt.

6. Type exit at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the ESG Documentation CD-ROM as
javaex.txt.

//**
// PROGRAM NAME: javaex.txt
// Sample java program to talk to the signal generator via SCPI-over-sockets
// This program requires Java version 1.1 or later.
// Save this code as ScpiSockTest.java
// Compile by typing: javac ScpiSockTest.java
// Run by typing: java ScpiSockTest
// The signal generator is set for 1 GHz and queried for its id string
//**

import java.io.*;
import java.net.*;
class ScpiSockTest
{
 public static void main(String[] args)
 {
 String instrumentName = "xxxxx"; // Put instrument hostname here

try
 {
 Socket t = new Socket(instrumentName,5025); // Connect to instrument
Chapter 2 91

Programming Examples
LAN Programming Examples

// Setup read/write mechanism

 BufferedWriter out =
 new BufferedWriter(
 new OutputStreamWriter(t.getOutputStream()));
 BufferedReader in =
 new BufferedReader(
 new InputStreamReader(t.getInputStream()));
 System.out.println("Setting frequency to 1 GHz...");
 out.write("freq 1GHz\n"); // Sets frequency
 out.flush();
 System.out.println("Waiting for source to settle...");
 out.write("*opc?\n"); // Waits for completion
 out.flush();
 String opcResponse = in.readLine();
 if (!opcResponse.equals("1"))

{
 System.err.println("Invalid response to ’*OPC?’!");
 System.exit(1);

}
 System.out.println("Retrieving instrument ID...");
 out.write("*idn?\n"); // Querys the id string
 out.flush();
 String idnResponse = in.readLine(); // Reads the id string
 // Prints the id string
 System.out.println("Instrument ID: " + idnResponse);

 }
 catch (IOException e)

{
 System.out.println("Error" + e);
 }
 }
}
Chapter 292

Programming Examples
RS-232 Programming Examples
RS-232 Programming Examples

• “Interface Check Using Agilent BASIC” on page 94

• “Interface Check Using VISA and C” on page 95

• “Queries Using Agilent BASIC” on page 97

• “Queries Using VISA and C” on page 98

Before Using the Examples

On the signal generator select the following settings:

• Baud Rate - 9600 must match computer’s baud rate

• RS-232 Echo - Off
Chapter 2 93

Programming Examples
RS-232 Programming Examples
Interface Check Using Agilent BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI
command *RST will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used
is COM1 (Serial A on some computers). Refer to “Using RS-232” on page 27 for more
information.

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset....’ message on
the front panel display. If there is no indication, check that the RS-232 cable is properly
connected to the computer serial port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the
program was typed incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run
the program. Refer to “If You Have Problems” on page 30 for more help.

The following program example is available on the ESG Documentation CD-ROM as
rs232ex1.txt.

10 !**
20 !
30 ! PROGRAM NAME: rs232ex1.txt
40 !
50 ! PROGRAM DESCRIPTION: This program verifies that the RS-232 connections and
60 ! interface are functional.
70 !
80 ! Connect the UNIX workstation to the signal generator using an RS-232 cable
90 !
100 !
110 ! Run Agilent BASIC, type in the following commands and then RUN the program
120 !
130 !
140 !**
150 !
160 INTEGER Num
170 CONTROL 9,0;1 ! Resets the RS-232 interface
180 CONTROL 9,3;9600 ! Sets the baud rate to match the sig gen
190 STATUS 9,4;Stat ! Reads the value of register 4
200 Num=BINAND(Stat,7) ! Gets the AND value
210 CONTROL 9,4;Num ! Sets parity to NONE
220 OUTPUT 9;"*RST" ! Outputs reset to the sig gen
230 END ! End the program
Chapter 294

Programming Examples
RS-232 Programming Examples
Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The
program verifies that the RS-232 connections and interface are functional. In this example
the COM2 port is used. The serial port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’
depending on the computer serial port you are using. Launch Microsoft Visual C++, add the
required files, and enter the following code into the .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
rs232ex1.cpp.

//**
// PROGRAM NAME: rs232ex1.cpp
//
// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to
// control the signal generator.
//
// Connect the computer to the signal generator using an RS-232 serial cable.
// The user is asked to set the signal generator for a 0 dBm power level
// A reset command *RST is sent to the signal generator via the RS-232
// interface and the power level will reset to the -135 dBm level.The default
// attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.
// These attributes can be changed using VISA functions.
//
// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test
//**

#include <visa.h>
#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>
#include <conio.h>

void main ()
{

int baud=9600; // Set baud rate to 9600
printf("Manually set the signal generator power level to 0 dBm\n");
printf("\n");
printf("Press any key to continue\n");
getch();
printf("\n");
ViSession defaultRM, vi; // Declares a variable of type ViSession

// for instrument communication on COM 2 port
ViStatus viStatus = 0;

// Opens session to RS-232 device at serial port 2
viStatus=viOpenDefaultRM(&defaultRM);
viStatus=viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &vi);
Chapter 2 95

Programming Examples
RS-232 Programming Examples

if(viStatus){ // If operation fails, prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

// initialize device
viStatus=viEnableEvent(vi, VI_EVENT_IO_COMPLETION, VI_QUEUE,VI_NULL);

viClear(vi); // Sends device clear command
// Set attributes for the session

viSetAttribute(vi,VI_ATTR_ASRL_BAUD,baud);
viSetAttribute(vi,VI_ATTR_ASRL_DATA_BITS,8);

viPrintf(vi, "*RST\n"); // Resets the signal generator
printf("The signal generator has been reset\n");
printf("Power level should be -135 dBm\n");
printf("\n"); // Prints new line character to the display
viClose(vi); // Closes session
viClose(defaultRM); // Closes default session

}

Chapter 296

Programming Examples
RS-232 Programming Examples
Queries Using Agilent BASIC

This example program demonstrates signal generator query commands over RS-232. Query
commands are of the type *IDN? and are identified by the question mark that follows the
mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:

The following program example is available on the ESG Documentation CD-ROM as
rs232ex2.txt.

10 !**
20 !
30 ! PROGRAM NAME: rs232ex2.txt
40 !
50 ! PROGRAM DESCRIPTION: In this example, query commands are used to read
60 ! data from the signal generator.
70 !
80 ! Start Agilent BASIC, type in the following code and then RUN the program.
90 !
100 !**
110 !
120 INTEGER Num
130 DIM Str$[200],Str1$[20]
140 CONTROL 9,0;1 ! Resets the RS-232 interface
150 CONTROL 9,3;9600 ! Sets the baud rate to match signal generator rate
160 STATUS 9,4;Stat ! Reads the value of register 4
170 Num=BINAND(Stat,7) ! Gets the AND value
180 CONTROL 9,4;Num ! Sets the parity to NONE
190 OUTPUT 9;"*IDN?" ! Querys the sig gen ID
200 ENTER 9;Str$! Reads the ID
210 WAIT 2 ! Waits 2 seconds
220 PRINT "ID =",Str$! Prints ID to the screen
230 OUTPUT 9;"POW:AMPL -5 dbm" ! Sets the the power level to -5 dbm
240 OUTPUT 9;"POW?" ! Querys the power level of the sig gen
250 ENTER 9;Str1$! Reads the queried value
260 PRINT "Power = ",Str1$! Prints the power level to the screen
270 END ! End the program
Chapter 2 97

Programming Examples
RS-232 Programming Examples
Queries Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The
program verifies that the RS-232 connections and interface are functional. Launch Microsoft
Visual C++, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as
rs232ex2.cpp.

//**
//
// PROGRAM NAME: rs232ex2.cpp
//
// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to control
// the signal generator.
//
// Connect the computer to the signal generator using the RS-232 serial cable
// and enter the following code into the project .cpp source file.
// The program queries the signal generator ID string and sets and queries the power
// level. Query results are printed to the screen. The default attributes e.g. 9600 baud,
// parity, 8 data bits,1 stop bit are used. These attributes can be changed using VISA
// functions.
//
// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test
//**

#include <visa.h>
#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>
#include <conio.h>

#define MAX_COUNT 200

int main (void)
{

ViStatus status; // Declares a type ViStatus variable
ViSession defaultRM, instr;// Declares type ViSession variables
ViUInt32 retCount; // Return count for string I/O
ViChar buffer[MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM);// Initializes the system
// Open communication with Serial Port 2

status = viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &instr);

if(status){ // If problems, then prompt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
Chapter 298

Programming Examples
RS-232 Programming Examples
printf("\n");
exit(0);}

 // Set timeout for 5 seconds
viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

// Asks for sig gen ID string
 status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Reads the sig gen response
 status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= ’\0’; // Indicates the end of the string
printf("Signal Generator ID: "); // Prints header for ID
printf(buffer); // Prints the ID string to the screen
printf("\n"); // Prints carriage return

// Flush the read buffer
// Sets sig gen power to -5dbm

status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);
// Querys the sig gen for power level

status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);
// Read the power level

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= ’\0’; // Indicates the end of the string
printf("Power level = "); // Prints header to the screen
printf(buffer); // Prints the queried power level
printf("\n");
status = viClose(instr); // Close down the system
status = viClose(defaultRM);
return 0;

}

Chapter 2 99

Programming Examples
RS-232 Programming Examples
Chapter 2100

3 Programming the
Status Register System
101

Programming the Status Register System
Overview
Overview
During remote operation, you may need to monitor the status of the signal generator for error
conditions or status changes. The signal generator’s error queue can be read with the SCPI
query :SYSTem:ERRor? (Refer to “:ERRor[:NEXT]” in the SCPI command reference guide) to
see if any errors have occurred. An alternative method uses the signal generator’s status
register system to monitor error conditions and/or condition changes.

The signal generator’s status register system provides two major advantages:

• You can monitor the settling of the signal generator using the settling bit of the Standard
Operation Status Group’s condition register.

• You can use the service request (SRQ) interrupt technique to avoid status polling,
therefore giving a speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data
structures for reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a
hierarchical order. The lower-priority status registers propagate their data to the
higher-priority registers using summary bits. The Status Byte Register is at the top of the
hierarchy and contains the status information for lower level registers. The lower level
registers monitor specific events or conditions.

The lower level status registers are grouped according to their functionality. For example, the
Data Quest. Frequency Status Group consists of five registers. This chapter may refer to a
group as a register so that the cumbersome correct description is avoided. For example, the
Standard Operation Status Group’s Condition Register can be referred to as the Standard
Operation Status register. Refer to “Status Groups” on page 115 for more information.

Figure 3-1 and Figure 3-2 show the signal generator’s status byte register system and
hierarchy.

The status register system uses IEEE 488.2 commands (those beginning with *) to access the
higher-level summary registers. Lower-level registers can be accessed using STATus
commands.
Chapter 3102

Programming the Status Register System
Overview
Figure 3-1 The Overall Status Byte Register System (1 of 2)
Chapter 3 103

Programming the Status Register System
Overview
Figure 3-2 The Overall Status Byte Register System (2 of 2)
Chapter 3104

Programming the Status Register System
Status Register Bit Values
Status Register Bit Values
Each bit in a register is represented by a decimal value based on its location in the register
(see Table 3-1).

• To enable a particular bit in a register, send its value with the SCPI command. Refer to the
signal generator’s SCPI command listing for more information.

• To enable more than one bit, send the sum of all the bits that you want to enable.
• To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to give a decimal value
of 65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example, if you want to
query the Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits=1) then the query will return the decimal
value 140. The value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

NOTE Bit 15 is not used and is always set to zero.

Table 3-1 Status Register Bit Decimal Values

Decimal
Value

A
lw

ay
s

0

16
38

4

81
92

40
96

20
48

10
24 51
2

25
6

12
8 64 32 16 8 4 2 1

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Chapter 3 105

Programming the Status Register System
Accessing Status Register Information
Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 3-1
on page 103 or Figure 3-2 on page 104 for register location and names.

2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.

Determining What to Monitor

You can monitor the following conditions:

• current signal generator hardware and firmware status
• whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers.
These registers represent the current state of the signal generator and are updated in real
time. When the condition monitored by a particular bit becomes true, the bit sets to 1. When
the condition becomes false, the bit resets to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded
as an event. The transitions can be positive to negative, negative to positive, or both. To
monitor a certain condition, enable the bit associated with the condition in the associated
positive and negative registers.

Once you have enabled a bit via the transition registers, the signal generator monitors it for a
change in its condition. If this change in condition occurs, the corresponding bit in the event
register will be set to 1. When a bit becomes true (set to 1) in the event register, it stays set
until the event register is read or is cleared. You can thus query the event register for a
condition even if that condition no longer exists.

The event register can be cleared only by querying its contents or sending the *CLS command,
which clears all event registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The
transition registers are preset to register positive transitions (a change going from 0 to 1).
This can be changed so the selected bit is detected if it goes from true to false (negative
transition), or if either transition occurs.
Chapter 3106

Programming the Status Register System
Accessing Status Register Information
Deciding How to Monitor

You can use either of two methods described below to access the information in status
registers (both methods allow you to monitor one or more conditions).

• The polling method

In the polling method, the signal generator has a passive role. It tells the controller that
conditions have changed only when the controller asks the right question. This is
accomplished by a program loop that continually sends a query.

The polling method works well if you do not need to know about changes the moment they
occur. Use polling in the following situations:

— when you use a programming language/development environment or I/O interface that
does not support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added
complexity of setting up an SRQ handler

• The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more
active role. It tells the controller when there has been a condition change without the
controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a
change using the polling method, the program must repeatedly read the registers.) Use the
SRQ method in the following situations:

— when you need time-critical notification of changes
— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling
Chapter 3 107

Programming the Status Register System
Accessing Status Register Information
Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ
interrupts (for example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using
this method, you must do the following:

1. Determine which bit monitors the condition.

2. Send commands to enable the bit that monitors the condition (transition registers).

3. Send commands to enable the summary bits that report the condition (event enable
registers).

4. Send commands to enable the status byte register to monitor the condition.

5. Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time the controller
would otherwise have used to monitor the condition, as in a loop method, can be used to
perform other tasks. The application determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the RQS bit in the status byte
register is set. In order for the controller to respond to the change, the Service Request Enable
Register needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request The Service Request Enable Register lets you choose the
bits in the Status Byte Register that will trigger a service request. Send the *SRE <num>
command where <num> is the sum of the decimal values of the bits you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard
Operation Status register summary bit is set to 1, a service request is generated) send the
command *SRE 128. Refer to Figure 3-1 on page 103 or Figure 3-2 on page 104 for bit
positions and values.

The query command *SRE? returns the decimal value of the sum of the bits previously
enabled with the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the
decimal sum of the bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal
sum will be 136 (bit 7=128 and bit 3=8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a
time can set the RQS bit. All bits that are asserting an SRQ will be read as part
of the status byte when it is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are
necessary to inform the controller that the signal generator requires service. Asserting SRQ
Chapter 3108

Programming the Status Register System
Accessing Status Register Information
informs the controller that some device on the bus requires service. Setting the RQS bit allows
the controller to determine which signal generator requires service.

This process is initiated if both of the following conditions are true:

• The corresponding bit of the Service Request Enable Register is also set to 1.

• The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ
process is initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should
instruct the controller to perform a serial poll when SRQ is true. Each device on the bus
returns the contents of its status byte register in response to this poll. The device whose
request service summary bit (RQS) bit is set to 1 is the device that requested service.

NOTE When you read the signal generator’s Status Byte Register with a serial poll,
the RQS bit is reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and
the mode set to continuous, restarting the measurement (INIT command) can
cause the measuring bit to pulse low. This causes an SRQ when you have not
actually reached the “end-of-sweep” or measurement condition. To avoid this,
do the following:

1. Send the command INITiate:CONTinuous OFF.

2. Set/enable the status registers.

3. Restart the measurement (send INIT).
Chapter 3 109

Programming the Status Register System
Accessing Status Register Information
Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level, using the IEEE
488.2 common commands listed below. You can set and query individual status registers using
the commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and
clearing all the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable
Register which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register
which is part of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1
when all commands have completed. The query stops any new commands from being
processed until the current processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service
Request Enable Register, the Standard Event Status Enable Register, and device-specific
event enable registers at power on. The query returns the flag setting from the *PSC
command.

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request
Enable Register.

*STB? (status byte) queries the value of the status byte register without erasing its
contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and
error/event queue enable registers. (Refer to Table 3-2.)
Chapter 3110

Programming the Status Register System
Accessing Status Register Information
Table 3-2 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:OPERation:BASeband:ENABle 0
:STATus:OPERation:BASeband:NTRansition 0
:STATus:OPERation:BASeband:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:MODulation:ENABle 32767
:STATus:QUEStionable:MODulation:NTRansition 32767
:STATus:QUEStionable:MODulation:PTRansition 32767
:STATus:QUEStionable:POWer:ENABle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767
:STATus:QUEStionable:BERT:ENABle 32767
:STATus:QUEStionable:BERT:NTRansition 32767
:STATus:QUEStionable:BERT:PTRansition 32767
Chapter 3 111

Programming the Status Register System
Status Byte Group
Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable
Register.
Chapter 3112

Programming the Status Register System
Status Byte Group
Status Byte Register
Table 3-3 Status Byte Register Bits

Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error
queue is not empty. The SCPI error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data
Questionable summary bit has been set. The Data Questionable Event Register can then be
read to determine the specific condition that caused this bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready
in the output queue. There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard
Event summary bit has been set. The Standard Event Status Register can then be read to
determine the specific event that caused this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal
generator has at least one reason to require service. This bit is also called the Master Summary
Status bit (MSS). The individual bits in the Status Byte are individually ANDed with their
corresponding service request enable register, then each individual bit value is ORed and input
to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the
Standard Operation Status Group’s summary bit has been set. The Standard Operation Event
Register can then be read to determine the specific condition that caused this bit to be set.

Query: *STB?

Response: The decimal sum of the bits set to 1 including the master summary status bit
(MSS) bit 6.

Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)

The decimal value 200 is returned when the MSS bit is set high (1).

Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)
Chapter 3 113

Programming the Status Register System
Status Byte Group
Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status Byte Register
trigger a service request.

*SRE <data> <data> is the sum of the decimal values of the bits you want to enable except
bit 6. Bit 6 cannot be enabled on this register. Refer to Figure 3-1 on page 103
or Figure 3-2 on page 104.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding
status group register summary bit sets to 1. Send the command *SRE 160
(128 + 32).

Query: *SRE?

Response: The decimal value of the sum of the bits previously enabled with the
*SRE <data> command.
Chapter 3114

Programming the Status Register System
Status Groups
Status Groups
The Standard Operation Status Group and the Data Questionable Status Group consist of the
registers listed below. The Standard Event Status Group is similar but does not have negative
or positive transition filters or a condition register.

Condition
Register A condition register continuously monitors the hardware and firmware

status of the signal generator. There is no latching or buffering for a
condition register; it is updated in real time.

Negative
Transition
Filter A negative transition filter specifies the bits in the condition register that

will set corresponding bits in the event register when the condition bit
changes from 1 to 0.

Positive
Transition
Filter A positive transition filter specifies the bits in the condition register that

will set corresponding bits in the event register when the condition bit
changes from 0 to 1.

Event
Register An event register latches transition events from the condition register as

specified by the positive and negative transition filters. Once the bits in the
event register are set, they remain set until cleared by either querying the
register contents or sending the *CLS command.

Event
Enable
Register An enable register specifies the bits in the event register that generate the

summary bit. The signal generator logically ANDs corresponding bits in the
event and enable registers and ORs all the resulting bits to produce a
summary bit. Summary bits are, in turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status
summary bits. In each status group, corresponding bits in the condition register are filtered
by the negative and positive transition filters and stored in the event register. The contents of
the event register are logically ANDed with the contents of the enable register and the result
is logically ORed to produce a status summary bit in the Status Byte Register.
Chapter 3 115

Programming the Status Register System
Status Groups
Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the
Status Byte Register. This group consists of the Standard Event Status Register (an event
register) and the Standard Event Status Enable Register.
Chapter 3116

Programming the Status Register System
Status Groups
Standard Event Status Register

Table 3-4 Standard Event Status Register Bits

Bit Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator
operations were completed following execution of the *OPC command.

1 Request Control. This bit is always set to 0. (The signal generator does not request control.)

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors
have SCPI error numbers from −499 to −400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has
occurred. Device dependent errors have SCPI error numbers from −399 to −300 and 1 to 32767.

4 Execution Error. A 1 in this bit position indicates that an execution error has occurred.
Execution errors have SCPI error numbers from −299 to −200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred.
Command errors have SCPI error numbers from −199 to −100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been
pressed. This is true even if the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and
then on.

Query: *ESR?

Response: The decimal sum of the bits set to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).
Chapter 3 117

Programming the Status Register System
Status Groups
Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event
Status Register set the summary bit (bit 5 of the Status Byte Register) to 1.

*ESE <data> <data> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits is set to 1, the
Standard Event Status summary bit of the Status Byte Register is set to 1.
Send the command *ESE 192 (128 + 64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the
*ESE <data> command.
Chapter 3118

Programming the Status Register System
Status Groups
Standard Operation Status Group

The Operation Status Group is used to determine the specific event that set bit 7 in the Status
Byte Register. This group consists of the Standard Operation Condition Register, the
Standard Operation Transition Filters (negative and positive), the Standard Operation Event
Register, and the Standard Operation Event Enable Register.
Chapter 3 119

Programming the Status Register System
Status Groups
Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits

Bit Description

0 I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

4 Measuring. A1 in this bit position indicates that a bit error rate test is in progress

5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for
trigger” state. When option 300 is enabled, a 1 in this bit position indicates that
TCH/PDCH synchronization is established and waiting for a trigger to start
measurements.

6,7,8 Unused. These bits are always set to 0.

9 DCFM/DCφM Null in Progress. A 1 in this bit position indicates that the signal
generator is currently performing a DCFM/DCΦM zero calibration.

10 Baseband is Busy. A 1 in this bit position indicates that the baseband generator is
communicating or processing. This is a summary bit. See the “Baseband Operation
Status Group” on page 122 for more information.

11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is
currently doing the necessary pre-sweep calculations.

12 BERT Synchronizing. A 1 in this bit position is set while the BERT is synchronizing
to ‘BCH’, then ‘TCH’ and then to ‘PRBS’.

12, 13, 14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:OPERation:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).
Chapter 3120

Programming the Status Register System
Status Groups
Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read only. Reading data
from an event register clears the content of that register.

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard
Operation Event Register set the summary bit (bit 7 of the Status Byte Register) to 1

Commands: STATus:OPERation:NTRansition <value> (negative transition), or
STATus:OPERation:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:NTRansition?

STATus:OPERation:PTRansition?

Query: STATus:OPERation[:EVENt]?

Command: STATus:OPERation:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the
Standard Operation Status summary bit of the Status Byte Register is set to 1.
Send the command STAT:OPER:ENAB 520 (512 + 8).

Query: STATus:OPERation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:OPERation:ENABle <value> command.
Chapter 3 121

Programming the Status Register System
Status Groups
Baseband Operation Status Group

The Baseband Operation Status Group is used to determine the specific event that set bit 10
in the Standard Operation Status Group. This group consists of the Baseband Operation
Condition Register, the Baseband Operation Transition Filters (negative and positive), the
Baseband Operation Event Register, and the Baseband Operation Event Enable Register.
Chapter 3122

Programming the Status Register System
Status Groups
Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register
as specified by the transition filters. Event registers are destructive read only. Reading data
from an event register clears the content of that register.

Table 3-6 Baseband Operation Condition Register Bits

Bit Description

0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is
active.

1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal
generator baseband generator is handling data I/O.

2–14 Unused. This bit position is set to 0.

15 Always 0.

Query: STATus:OPERation:BASeband:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 2 is returned. The decimal sum = 2 (bit 1).

Commands: STATus:OPERation:BASeband:NTRansition <value> (negative transition), or
STATus:OPERation:BASeband:PTRansition <value> (positive transition),
where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:BASeband:NTRansition?

STATus:OPERation:BASeband:PTRansition?

Query: STATus:OPERation:BASeband[:EVENt]?
Chapter 3 123

Programming the Status Register System
Status Groups
Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register lets you choose which bits in the Baseband
Operation Event Register can set the summary bit (bit 7 of the Status Byte Register).

Command: STATus:OPERation:BASeband:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 0 and bit 1 so that whenever either of those bits is set to 1, the
Baseband Operation Status summary bit of the Status Byte Register is set to 1.
Send the command STAT:OPER:ENAB 520 (512 + 8).

Query: STATus:OPERation:BASeband:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:OPERation:BASeband:ENABle <value> command.
Chapter 3124

Programming the Status Register System
Status Groups
Data Questionable Status Group

The Data Questionable Status Group is used to determine the specific event that set bit 3 in
the Status Byte Register. This group consists of the Data Questionable Condition Register,
the Data Questionable Transition Filters (negative and positive), the Data Questionable
Event Register, and the Data Questionable Event Enable Register.
Chapter 3 125

Programming the Status Register System
Status Groups
Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read only.

Table 3-7 Data Questionable Condition Register Bits

Bit Description

0, 1, 2 Unused. These bits are always set to 0.

3 Power (summary). This is a summary bit taken from the QUEStionable:POWer
register. A 1 in this bit position indicates that one of the following may have happened:
The ALC (Automatic Leveling Control) is unable to maintain a leveled RF output power
(i.e., ALC is UNLEVELED), the reverse power protection circuit has been tripped. See
the “Data Questionable Power Status Group” on page 129 for more information.

4 Temperature (OVEN COLD). A 1 in this bit position indicates that the internal
reference oscillator (reference oven) is cold.

5 Frequency (summary). This is a summary bit taken from the
QUEStionable:FREQuency register. A 1 in this bit position indicates that one of the
following may have happened: synthesizer PLL unlocked, 10 MHz reference VCO PLL
unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked.
For more information, see the “Data Questionable Frequency Status Group” on page 132.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the
QUEStionable:MODulation register. A 1 in this bit position indicates that one of the
following may have happened: modulation source 1 underrange, modulation source 1
overrange, modulation source 2 underrange, modulation source 2 overrange, modulation
uncalibrated. See the “Data Questionable Modulation Status Group” on page 135 for
more information.

8 Calibration (summary). This is a summary bit taken from the
QUEStionable:CALibration register. A 1 in this bit position indicates that one of the
following may have happened: an error has occurred in the DCFM/DCΦM zero
calibration, an error has occurred in the I/Q calibration. See the “Data Questionable
Calibration Status Group” on page 138 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up.
This bit can only be cleared by cycling the signal generator’s line power. *CLS will not
clear this bit.

10, 11 Unused. These bits are always set to 0.
Chapter 3126

Programming the Status Register System
Status Groups
Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified
by the transition filters. Event registers are destructive read-only. Reading data from an event register
clears the content of that register.

12 BERT (summary). This is a summary bit taken from the QUEStionable:BERT register.
A 1 in this bit position indicates that one of the following occurred: no BCH/TCH
synchronization, no data change, no clock input, PRBS not synchronized, demod/DSP
unlocked or demod unleveled. See the “Data Questionable BERT Status Group” on
page 141 for more information.

13, 14 Unused. These bits are set to 0.

15 Always 0.

Query: STATus:QUEStionable:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Commands: STATus:QUEStionable:NTRansition <value> (negative transition), or
STATus:QUEStionable:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:NTRansition?

STATus:QUEStionable:PTRansition?

Query: STATus:QUEStionable[:EVENt]?

Table 3-7 Data Questionable Condition Register Bits

Bit Description
Chapter 3 127

Programming the Status Register System
Status Groups
Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable
Event Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus:QUEStionable:ENABle <value> command where <value> is the sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Status summary bit of the Status Byte Register is set to 1. Send the
command STAT:QUES:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:ENABle <value> command.
Chapter 3128

Programming the Status Register System
Status Groups
Data Questionable Power Status Group

The Data Questionable Power Status Group is used to determine the specific event that set bit
3 in the Data Questionable Condition Register. This group consists of the Data Questionable
Power Condition Register, the Data Questionable Power Transition Filters (negative and
positive), the Data Questionable Power Event Register, and the Data Questionable Power
Event Enable Register.
Chapter 3 129

Programming the Status Register System
Status Groups
Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)
or negative (1 to 0).

Table 3-8 Data Questionable Power Condition Register Bits

Bit Description

0 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse
power protection (RPP) circuit has been tripped. There is no output in this state. Any
conditions that may have caused the problem should be corrected. The RPP circuit can be
reset by sending the remote SCPI command: OUTput:PROTection:CLEar. This bit is always
set to 0.

1 Unleveled. A 1 in this bit indicates that the output leveling loop is unable to set the output
power.

2−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:POWer:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:POWer:NTRansition <value> (negative transition), or
STATus:QUEStionable:POWer:PTRansition <value> (positive transition),
where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:POWer:NTRansition?
STATus:QUEStionable:POWer:PTRansition?
Chapter 3130

Programming the Status Register System
Status Groups
Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition
register as specified by the transition filters. Event registers are destructive read-only.
Reading data from an event register clears the content of that register.

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data
Questionable Power Event Register set the summary bit (bit 3 of the Data Questionable
Condition Register) to 1.

Query: STATus:QUEStionable:POWer[:EVENt]?

Command: STATus:QUEStionable:POWer:ENABle <value> command where <value> is the
sum of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Power summary bit of the Data Questionable Condition Register is
set to 1. Send the command STAT:QUES:POW:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:POWer:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:POWer:ENABle <value> command.
Chapter 3 131

Programming the Status Register System
Status Groups
Data Questionable Frequency Status Group

The Data Questionable Frequency Status Group is used to determine the specific event that
set bit 5 in the Data Questionable Condition Register. This group consists of the Data
Questionable Frequency Condition Register, the Data Questionable Frequency Transition
Filters (negative and positive), the Data Questionable Frequency Event Register, and the
Data Questionable Frequency Event Enable Register.
Chapter 3132

Programming the Status Register System
Status Groups
Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware
and firmware status of the signal generator. Condition registers are read-only.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in
the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-9 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 in this bit indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is
unlocked.

2 1 Ghz Ref Unlocked. A 1 in this bit indicates that the 1 Ghz reference signal is unlocked.

3 Baseband 1 Unlocked. A 1 in this bit indicates that the baseband 1 generator is unlocked.

4 Unused. This bit is set to 0.

5 Sampler Loop Unlocked. A 1 in this bit indicates that the sampler loop is unlocked.

6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.

7−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:FREQuency:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:FREQuency:NTRansition <value> (negative transition)
or STATus:QUEStionable:FREQuency:PTRansition <value> (positive
transition) where <value> is the sum of the decimal values of the bits you want
to enable.

Queries: STATus:QUEStionable:FREQuency:NTRansition?

STATus:QUEStionable:FREQuency:PTRansition?
Chapter 3 133

Programming the Status Register System
Status Groups
Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters.
Event registers are destructive read-only. Reading data from an event register clears the
content of that register.

Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the
summary bit (bit 5 of the Data Questionable Condition Register) to 1.

Query: STATus:QUEStionable:FREQuency[:EVENt]?

Command: STATus:QUEStionable:FREQuency:ENABle <value>, where <value> is the sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Frequency summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT:QUES:FREQ:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:FREQuency:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:FREQuency:ENABle <value> command.
Chapter 3134

Programming the Status Register System
Status Groups
Data Questionable Modulation Status Group

The Data Questionable Modulation Status Group is used to determine the specific event that
set bit 7 in the Data Questionable Condition Register. This group consists of the Data
Questionable Modulation Condition Register, the Data Questionable Modulation Transition
Filters (negative and positive), the Data Questionable Modulation Event Register, and the
Data Questionable Modulation Event Enable Register.
Chapter 3 135

Programming the Status Register System
Status Groups
Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware
and firmware status of the signal generator. Condition registers are read-only.

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes
in the condition register set corresponding bits in the event register. Changes can be positive
(0 to 1) or negative (1 to 0).

Table 3-10 Data Questionable Modulation Condition Register Bits

Bit Description

0 Modulation 1 Undermod. A 1 in this bit indicates that the External 1 input, ac coupling on,
is less than 0.97 volts.

1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is
more than 1.03 volts.

2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on,
is less than 0.97 volts.

3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is
more than 1.03 volts.

4 Modulation Uncalibrated. A 1 in this bit indicates that modulation is uncalibrated.

5−14 Unused. This bit is always set to 0.

15 Always 0.

Query: STATus:QUEStionable:MODulation:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:MODulation:NTRansition <value> (negative
transition), or STATus:QUEStionable:MODulation:PTRansition <value>
(positive transition), where <value> is the sum of the decimal values of the bits
you want to enable.

Queries: STATus:QUEStionable:MODulation:NTRansition?
STATus:QUEStionable:MODulation:PTRansition?
Chapter 3136

Programming the Status Register System
Status Groups
Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are destructive
read-only. Reading data from an event register clears the content of that register.

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the
Data Questionable Modulation Event Register set the summary bit (bit 7 of the Data
Questionable Condition Register) to 1.

Query: STATus:QUEStionable:MODulation[:EVENt]?

Command: STATus:QUEStionable:MODulation:ENABle <value> command where <value>
is the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Modulation summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT:QUES:MOD:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:MODulation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:MODulation:ENABle <value> command.
Chapter 3 137

Programming the Status Register System
Status Groups
Data Questionable Calibration Status Group

The Data Questionable Calibration Status Group is used to determine the specific event that
set bit 8 in the Data Questionable Condition Register. This group consists of the Data
Questionable Calibration Condition Register, the Data Questionable Calibration Transition
Filters (negative and positive), the Data Questionable Calibration Event Register, and the
Data Questionable Calibration Event Enable Register.
Chapter 3138

Programming the Status Register System
Status Groups
Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration
status of the signal generator. Condition registers are read only.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes
in the condition register set corresponding bits in the event register. Changes can be positive
(0 to 1) or negative (1 to 0).

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are destructive
read-only. Reading data from an event register clears the content of that register.

Table 3-11 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM/DCΦM Zero Failure. A 1 in this bit indicates that the DCFM/DCΦM zero calibration
routine has failed. This is a critical error. The output of the source has no validity until the
condition of this bit is 0.

1 I/Q Calibration Failure. A 1 in this bit indicates that the I/Q modulation calibration
experienced a failure.

2−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:CALibration:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:CALibration:NTRansition <value> (negative
transition), or STATus:QUEStionable:CALibration:PTRansition <value>
(positive transition), where <value> is the sum of the decimal values of the bits
you want to enable.

Queries: STATus:QUEStionable:CALibration:NTRansition?
STATus:QUEStionable:CALibration:PTRansition?

Query: STATus:QUEStionable:CALibration[:EVENt]?
Chapter 3 139

Programming the Status Register System
Status Groups
Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the
Data Questionable Calibration Event Register set the summary bit (bit 8 of the Data
Questionable Condition register) to 1.

Command: STATus:QUEStionable:CALibration:ENABle <value>, where <value> is the
sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable Calibration summary bit of the Data Questionable Condition
Register is set to 1. Send the command STAT:QUES:CAL:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:CALibration:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:CALibration:ENABle <value> command.
Chapter 3140

Programming the Status Register System
Status Groups
Data Questionable BERT Status Group

The Data Questionable BERT Status Group is used to determine the specific event that set bit
12 in the Data Questionable Condition Register. The Data Questionable Status group consists
of the Data Questionable BERT Condition Register, the Data Questionable BERT Transition
Filters (negative and positive), the Data Questionable BERT Event Register, and the Data
Questionable BERT Event Enable Register.
Chapter 3 141

Programming the Status Register System
Status Groups
Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and
firmware status of the signal generator. Condition registers are read only.

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changes in the
condition register set corresponding bits in the event register. Changes can be positive (0 to 1)

Table 3-12 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1 in this bit indicates no clock input for more than 3 seconds.

1 No Data Change. A 1 in this bit indicates no data change occurred during the last 200 clock
signals.

2 PRBS Sync Loss. A 1 is set while PRBS synchronization is not established. *RST sets the bit
to zero.

3−10 Unused. These bits are always set to 0.

11 Down conv. / Demod Unlocked. A 1 in this bit indicates that either the demodulator or the
down converter is out of lock.

12 Demod DSP Ampl out of range. A 1 in this bit indicates the demodulator amplitude is out
of range. The *RST command will set this bit to zero (0).

13 Sync. to BCH/TCH/PDCH. If the synchronization source is BCH, a 1 in this bit indicates
BCH synchronization is not established it does not indicate the TCH/PDCH synchronization
status. If the sync source is TCH or PDCH, a 1 in this bit indicates that TCH or PDCH
synchronization is not established. *RST sets the bit to zero.

14 Waiting for TCH/PDCH. A 1 in this bit indicates that a TCH or PDCH midamble has not
been received. This bit is set when bit 13 is set. The bit is also set when the TCH or PDCH
synchronization was once locked and then lost (in this case the front panel displays
“WAITING FOR TCH (or PDCH)”. *RST set the bit to zero.

15 Always 0.

Query: STATus:QUEStionable:BERT:CONDition?

Response: The decimal sum of the bits set to 1
Chapter 3142

Programming the Status Register System
Status Groups
or negative (1 to 0).

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition
register as specified by the transition filters. Event registers are destructive read-only.
Reading data from an event register clears the content of that register.

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data
Questionable BERT Event Register set the summary bit (bit 3 of the Data Questionable
Condition Register) to 1.

Commands: STATus:QUEStionable:BERT:NTRansition <value> (negative transition), or
STATus:QUEStionable:BERT:PTRansition <value> (positive transition),
where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:BERT:NTRansition?
STATus:QUEStionable:BERT:PTRansition?

Query: STATus:QUEStionable:BERT[:EVENt]?

Command: STATus:QUEStionable:BERT:ENABle <value> command where <value> is the
sum of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits is set to 1, the Data
Questionable BERT summary bit of the Data Questionable Condition Register is
set to 1. Send the command STAT:QUES:BERT:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:BERT:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:BERT:ENABle <value> command.
Chapter 3 143

Programming the Status Register System
Status Groups
Chapter 3144

4 Downloading and Using Files
145

Downloading and Using Files
Introduction
Introduction
Computer generated data can be downloaded into your signal generator. Depending on the
options present, the signal generator will accept ARB waveform data, user file data, FIR filter
coefficient data, and data downloads directly to waveform memory. This section explains the
different download methods, and the data formatting required for each method.

This chapter is divided by data transfer method. In addition, there is a section providing
troubleshooting information:

“ARB Waveform Data Downloads” on page 147

“Downloading E443xB Signal Generator Files” on page 161

“User File Data Downloads” on page 167

“FIR Filter Coefficient Downloads” on page 179

“Downloads Directly into Pattern RAM (PRAM)” on page 183

“Data Transfer Troubleshooting” on page 189
Chapter 4146

Downloading and Using Files
ARB Waveform Data Downloads
ARB Waveform Data Downloads
The signal generator accepts IQ waveform data downloads. After downloading the data file
into non-volatile memory, the file can be loaded into volatile memory and then played. These
user-defined IQ waveforms can also be sequenced together with other waveforms and played
as part of a waveform sequence.

NOTE The signal generator can use waveform files developed for the E443xB model
signal generators. Refer to “Downloading E443xB Signal Generator Files” on
page 161 for information on how to download these file types.

The IQ waveform data is used to drive the I and Q ports of the IQ modulator. The waveform
data is described using 16-bit I and 16-bit Q integer values in 2’s complement format. The I
and Q data values are interleaved, creating a single IQ waveform data file. The 2-byte I
integer and 2-byte Q integer values, along with a marker byte make up one sample and one
point is one pair of IQ values. There are five bytes of data for every sample as shown in Table
4-1 and Table 4-2.

The signal generator uses a marker file that is always associated with an IQ waveform file. If
you do not create a marker file for the IQ waveform file then the signal generator will
automatically create one. This automatically generated default marker file consists of all
zeros. The marker data drives the signal generator’s EVENT output connectors.

• Marker bit 1 drives EVENT 1 (Rear-panel BNC)

• Marker bit 2 drives EVENT 2 (Rear-panel BNC)

• Marker bit 3 drives EVENT 3 (Rear-panel Auxiliary D-Connector pin 19)

• Marker bit 4 drives EVENT 4 (Rear-panel Auxiliary D-Connector pin 18)

NOTE The default marker file is automatically created when no user defined marker
file is provided. The creation is done when the IQ waveform file is loaded into
volatile WFM1 (waveform memory) prior to playing. If the default marker file is
used, toggle the Mrk 2 to RF Blank softkey to off.

The marker file consists of 8-bit samples with each sample having four marker bits and four
unused bits. The result is that the IQ file will have four times as many bytes as the marker
file. See Table 4-1 and Table 4-2 for more detail on the file structure.

The signal generator uses this two-file format when generating waveform data. More details
are given in the following sections of this chapter.
Chapter 4 147

Downloading and Using Files
ARB Waveform Data Downloads
Bit-value and Output Power

Bit-value and output-power:

• 0 = 0 volts

• –32768 gives negative full-scale output

• 32767 gives positive full-scale output

Types of Arbitrary Waveform Generator Memory

Waveform data can be saved to volatile memory (called waveform memory or WFM1) and
non-volatile memory (called NVWFM memory). The data in waveform memory is lost
whenever the signal generator’s line power is cycled. If Option 005 is not installed, then the
signal generator provides approximately 3 Msamples of non-volatile memory. With Option 005
there is approximately 6 Gsamples of NVWFM memory available.

Waveforms stored in NVWFM memory must be moved to volatile memory in order to be
sequenced and played.

Table 4-1 IQ Data File Structure

Io 16 bits Q0 16 bits I1 16 bits Q1 16 bits

2 bytes 2 bytes 2 bytes 2 bytes

Table 4-2 Marker File Structure

4 bits unused
MSB

M0 4 bits
LSB

4 bits unused
MSB

M1 4 bits
LSB

1 byte 1 byte
Chapter 4148

Downloading and Using Files
ARB Waveform Data Downloads
Waveform Data Storage Path

• Volatile memory - waveform memory

IQ waveform data is stored in the signal generator’s /user/bbg1/waveform/ directory. The
associated marker data file, if provided, is stored in the /user/bbg1/markers/ directory. This
is volatile memory and the contents will be lost when the signal generator is turned off.

• Non-volatile memory - NVWFM memory

If the Option 005 is installed then IQ data is stored in the signal generator’s /user/waveform/
directory. The associated marker data file, if provided, is stored in the
/user/markers/directory. This is non-volatile memory and the contents will not be lost when
the signal generator is turned off.
Chapter 4 149

Downloading and Using Files
ARB Waveform Data Downloads
Data Requirements

IQ waveform data downloads have the following requirements:

• Data must be in signed, 2’s complement format.

• Data must be in 2-byte integers.

Two bytes are needed to express 16-bit waveforms. The signal generator accepts the most
significant byte (MSB) first.

• Input data must be between -32768 and 32767.

This range is based on the input specifications of the 16-bit DAC used to create the analog
voltages for the IQ modulator.

• Each IQ waveform must contain at least 60 samples to play in the waveform sequencer
(one sample equals one pair of IQ values and markers). An error message, “File format
invalid”, is displayed if this requirement is not met. The file format is discussed in
greater detail in the following sections.

• Each IQ waveform must contain an even number of samples to play in the waveform
sequencer. An error message, “File format invalid”, is displayed if this requirement is
not met. The file format is discussed in greater detail in the following sections.

• A marker file is always associated with an IQ waveform file. An empty (all zeros) default
marker file will be created if a marker file is not provided by the user.

• The user-defined marker file and IQ waveform data file must have the same name in the
signal generator.

File Structure and Memory

For volatile waveform memory (WFM1), there are approximately eight Msamples (32
Msamples with Option 002) of memory allocated in 1024-byte segments. For non-volatile
memory (NVWFM), Option 005 provides approximately 6 Gsamples of storage. Signal
generators without Option 005 provide 3 Msamples of NVWFM storage.

A waveform file must have a minimum of 60 samples of data. Each sample equals one IQ pair
of values, represented by four bytes of data, along with markers, represented by a single byte
of data. A 60 sample waveform file will occupy at 1024 bytes of waveform memory.

If a waveform file is too large to fit into a 1024-byte memory segment, additional memory
space is allocated in multiples of 1024 bytes. For example, a waveform represented by 500
samples is allocated to a 4096-byte memory segment (500 samples x 5 bytes).

Total memory usage may be much more than the sum of the samples that make up waveform
files. Many small waveform files can use large amounts of memory.
Chapter 4150

Downloading and Using Files
ARB Waveform Data Downloads
Downloading Waveforms

Two files, a waveform data file and the associated marker file, are downloaded into waveform
memory before being sequenced and played. The waveform data file can be loaded into the
signal generator’s waveform or NVWFM memory using the following methods:

• SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)

• SCPI over the GPIB or RS-232

• SCPI with sockets LAN (using port 5025).

• File Transfer Protocol (FTP). Refer to “Downloads Using FTP” on page 153 for information
on FTP.

Sample Command Line

A sample command line using SCPI:

SCPI command, <Arbitrary Block Data>

The <Arbitrary Block Data> is defined in the IEEE std. 488.2-1992 section 7.7.6. The
following is an example or the format as used to download waveform data to the signal
generator:

:MMEM:DATA "WFM1:<file_name>", #ABC

<file_name> the name of the waveform file stored in the signal generator.

A the number of decimal digits to follow in B.

B a decimal number specifying the number of data bytes in C.

C the binary waveform data.

NOTE If sockets is used to send data to the signal generator, you must provide an
end-of- file indicator. Use the following command to download waveform data:
MEM:DATA <WFM1:file_name>,#0<data> NL^END
Chapter 4 151

Downloading and Using Files
ARB Waveform Data Downloads
Example 1

FILENAME the waveform file name as it will appear in the signal generator’s waveform
memory catalog

#3 defines the number of decimal digits to follow in B. This variable is
represented by A in the sample command line.

240 denotes how many bytes of data are to follow. This variable is represented by
B in the sample command line.

(240 bytes of data) the binary waveform data order for each 2-byte sample is defined
as MSB (most significant byte) first and LSB (least significant byte) last.
The waveform must have at least 60 samples of data. Each sample (IQ data)
is represented by 4 bytes, 2 bytes for the I sample and 2 bytes for the Q
sample. In the example above the data, 240 bytes, represents 60 samples of
data.

Example 2

:MMEM:DATA "WFM1:file_name", #1912S407897

file_name the waveform file name as it will appear in the signal generator’s waveform
memory catalog.

#1 defines the number of decimal digits to follow in “B”.

9 denotes how many bytes of data are to follow.

12S407897 the ASCII representation of the data that is downloaded to the signal
generator. This variable is represented by C in the sample command line.
Chapter 4152

Downloading and Using Files
ARB Waveform Data Downloads
Downloads to Waveform Memory

NOTE Before downloading files into waveform memory, turn off the ARB by pressing
Mode > Dual ARB > ARB Off On until Off is highlighted or send the SCPI
command [:SOURce]:RADio:ARB[:STATe] OFF

MMEM:DATA "WFM1:<file_name>",#ABC for the waveform data file.
MMEM:DATA “MKR1:<file_name>”,#ABC for the markers file.

The full directory path name can be specified in the command line. The following SCPI
commands are equivalent to the previous commands:

MMEM:DATA “/USER/BBG1/WAVEFORM/<file_name>”,#ABC for the waveform data file.
MMEM:DATA “/USER/BBG1/MARKERS/<file_name>”,#ABC f or the markers file.

Downloads to NVWFM Memory:

To download files to NVWFM (non-volatile memory), using the GPIB or the LAN interface,
use the following SCPI commands:

MMEM:DATA “NVWFM:<file_name>”,#ABC for the waveform file.
MMEM:DATA “NVMKR:<file_name>”,#ABC for the markers file.

The full directory path name can be specified in the command line. The following SCPI
commands are equivalent to the previous commands:

MMEM:DATA “/USER/WAVEFORM/<file_name>”,#ABC for the waveform file.
MMEM:DATA “/USER/MARKERS/<file_name>”,#ABC f or the markers file.

Downloads Using FTP To download files to NVWFM memory (non-volatile memory),
using the file transfer protocol (FTP) over the LAN interface, perform the following steps.

1. From the PC Command Prompt, or Unix command line, change the directory to the
directory where the file to be downloaded is located.

2. From the PC Command Prompt or Unix command line type ftp instrument name. Where
instrument name is the hostname for the signal generator or the signal generator’s IP
address.

3. At the User: prompt, in the ftp window, press the Enter key (no entry is required).

4. At the Password: prompt, in the ftp window, press the Enter key (no entry is required).

5. At the ftp prompt type:
put <file_name> /USER/WAVEFORM/<file_name_1>

where <file_name> is the name of the file to download and <file_name_1> the name
designator for the signal generator’s /USER/WAVEFORM/ directory.
Chapter 4 153

Downloading and Using Files
ARB Waveform Data Downloads
If you have a marker file associated with the data file, use the following command to
download it to the signal generator:
put <marker file_name> /USER/MARKERS/<file_name_1>

where <marker file_name> is the name of the file to download and <file_name_1> the
name designator for the file in the signal generator’s /USER/MARKERS/ directory. Marker
files and the associated IQ waveform file have the same name.

NOTE If no marker file is provided, the signal generator automatically creates a
default marker file consisting of all zeros.

6. At the ftp prompt type: bye

7. At the Command Prompt type: exit
Chapter 4154

Downloading and Using Files
ARB Waveform Data Downloads
Example Programs

Waveform Generation Using C++ The following program (Metrowerks CodeWarrior 3.0)
creates an IQ waveform and writes the data to a file on your PC. Once the file is created, you
can use the file transfer protocol (FTP) to download the waveform data to the signal generator.
Refer to “Downloads Using FTP” on page 153 for more information on FTP.

#include <iostream>
#include <fstream>
#include <math.h>
#include <stdlib.h>

using namespace std;

int main (void)
{

ofstream out_stream; // write the IQ data to a file
const unsigned int SAMPLES =200; // number of sample pairs in the waveform

 const short AMPLITUDE = 32000; // amplitude between 0 and full scale dac value
 const double two_pi = 6.2831853;

 //allocate buffer for waveform
short* iqData = new short[2*SAMPLES];// need two bytes for each integer
if (!iqData)
{

cout << "Could not allocate data buffer." << endl;
return 1;

}

 out_stream.open("IQ_data"); // create a data file

if (out_stream.fail())
{

cout << "Input file opening failed" << endl;
exit(1);

}
//generate the sample data for I and Q. The I channel will have a sine

 //wave and the Q channel will a cosine wave.

 for (int i=0; i<SAMPLES; ++i)
 {
 iqData[2*i] = AMPLITUDE * sin(two_pi*i/(float)SAMPLES);
 iqData[2*i+1] = AMPLITUDE * cos(two_pi*i/(float)SAMPLES);
 }

// make sure bytes are in the order MSB(most significant byte) first. (PC only).

char* cptr = (char*)iqData;// cast the integer values to characters

for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES
{

char temp = cptr[i]; // swap LSB and MSB bytes
cptr[i]=cptr[i+1];
cptr[i+1]=temp;

}

 // now write the buffer to a file

out_stream.write((char*)iqData, 4*SAMPLES);
return 0;

}

Chapter 4 155

Downloading and Using Files
ARB Waveform Data Downloads
Waveform Downloading Using HP BASIC for Windows The following program will
download a waveform using HP BASIC for Windows into volatile ARB memory. The
waveform generated by this program is the same as the default SINE_TEST_WFM waveform file
available in the signal generator’s waveform memory. This code is similar to the code shown
for BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 80 with:

210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one
file in 2’s compliment form and a marker file is associated with this IQ waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses
the automatic EOL (End of Line) output. This allows multiple output commands to be
concatenated as if they were a single output. The “K” instructs HP BASIC to output the
following numbers or strings in the default format.

10 ! RE-SAVE "BASIC_Win_file"
20 Num_points=200
30 ALLOCATE INTEGER Int_array(1:Num_points*2)
40 DEG
50 FOR I=1 TO Num_points*2 STEP 2
60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))
70 NEXT I
80 FOR I=2 TO Num_points*2 STEP 2
90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))
100 NEXT I
110 PRINT "Data Generated"
120 Nbytes=4*Num_points
130 ASSIGN @Esg TO 719
140 ASSIGN @Esgb TO 719;FORMAT MSB FIRST
150 Nbytes$=VAL$(Nbytes)
160 Ndigits=LEN(Nbytes$)
170 Ndigits$=VAL$(Ndigits)
180 WAIT 1
190 OUTPUT @Esg USING "#,K";"MMEM:DATA ""WFM1:data_file"",#"
200 OUTPUT @Esg USING "#,K";Ndigits$
210 OUTPUT @Esg USING "#,K";Nbytes$
220 WAIT 1
230 OUTPUT @Esgb;Int_array(*)
240 OUTPUT @Esg;END
250 ASSIGN @Esg TO *
260 ASSIGN @Esgb TO *
270 PRINT
280 PRINT "*END*"
290 END
Chapter 4156

Downloading and Using Files
ARB Waveform Data Downloads
Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in IQ waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of
the GPIB card in the computer, and 19 is the address of the signal
generator. This I/O path is used to send ASCII data to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the
waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the
name of the file, data_file, that will receive the waveform data. The name,
data_file, will appear in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that ESGb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.
Chapter 4 157

Downloading and Using Files
ARB Waveform Data Downloads
Waveform Downloading Using HP BASIC for UNIX The following program shows you
how to download waveforms using HP BASIC for UNIX. The code is similar to that shown for
HP BASIC for Windows but there is a formatting difference in line 45 and line 50.

As discussed at the beginning of this section, I and Q waveform data is interleaved into one
file in 2’s compliment form and a marker file is associated with this IQ waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses
the automatic EOL (End of Line) output. This allows multiple output commands to be
concatenated as if they were a single output. The “K” instructs HP BASIC to output the
following numbers or strings in the default format.

10 ! RE-SAVE "UNIX_file"
20 Num_points=200
30 ALLOCATE INTEGER Int_array(1:Num_points*2)
40 DEG
50 FOR I=1 TO Num_points*2 STEP 2
60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))
70 NEXT I
80 FOR I=2 TO Num_points*2 STEP 2
90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))
100 NEXT I
110 PRINT "Data generated "
120 Nbytes=4*Num_points
130 ASSIGN @Esg TO 719;FORMAT ON
140 ASSIGN @Esgb TO 719;FORMAT OFF
150 Nbytes$=VAL$(Nbytes)
160 Ndigits=LEN(Nbytes$)
170 Ndigits$=VAL$(Ndigits)
180 WAIT 1
190 OUTPUT @Esg USING "#,K";"MMEM:DATA ""WFM1:data_file"",#"
200 OUTPUT @Esg USING "#,K";Ndigits$
210 OUTPUT @Esg USING "#,K";Nbytes$
220 WAIT 1
230 OUTPUT @Esgb;Int_array(*)
240 WAIT 2
241 OUTPUT @Esg;END
250 ASSIGN @Esg TO *
260 ASSIGN @Esgb TO *
270 PRINT
280 PRINT "*END*"
290 END
Chapter 4158

Downloading and Using Files
ARB Waveform Data Downloads
Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in IQ waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of
the GPIB card in the computer, and 19 is the address of the signal
generator. This I/O path is used to send ASCII data to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the
waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the
name of the file, data_file, that will receive the waveform data. The name,
data_file, will appear in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that ESGb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.
Chapter 4 159

Downloading and Using Files
ARB Waveform Data Downloads
Playing a Downloaded Waveform

The following procedure shows you how to load and play a downloaded waveform file, using
front panel key presses and remote commands.

1. Select the downloaded waveform file in non-volatile waveform memory (NVWFM) and load
it into volatile waveform memory (WFM1). The file consists of both IQ and marker file
data, and therefore, requires two SCPI commands when loaded remotely.

Via the front panel:

a. Press Mode > Dual ARB > Select Waveform > Waveform Segments > Load Store until Load
is highlighted.

b. Highlight the waveform file in the NVWFM catalog using the arrow keys or front panel
knob.

c. Press Load Segment From NVWFM Memory. If the waveform is not highlighted, use the
cursor to highlight the waveform.

Via the remote interface, send the following SCPI commands:

:MEMory:COPY[NAME]"<NVWFM:file_name>","<WFM1:file_name>"
:MEMory:COPY[NAME]"<NVMKR:file_name>","<WFM1:file_name>"

2. Select the downloaded waveform file in volatile waveform memory for playback.

Via the front panel:

Press Mode > Dual ARB > Select Waveform > Select Waveform .

Via the remote interface send the following SCPI command:

[:SOURce}:RADio:ARB:WAVeform "WFM1:<file_name>"

3. Play the waveform and use it to modulate the RF carrier.

Via the front panel:

a. Press ARB Off On until On is highlighted.

b. Press Mod On/Off until the MOD ON annunciator appears on the display.

c. Press RF On/Off until the RF On annunciator appears on the display.

Via the remote interface, send the following SCPI commands:

[:SOURce]:RADio:ARB[:STATe] ON
:OUTPut:MODulation[:STATe] ON
:OUTPut[:STATe] ON
Chapter 4160

Downloading and Using Files
ARB Waveform Data Downloads
Downloading E443xB Signal Generator Files

Download the E443xB type files to the signal generator exactly as if downloading files to a
E443xB signal generator.

Downloaded E443xB waveform type files will automatically be converted to the new file
format, as described on page 147, and stored into the signal generator’s memory.

The file conversion process takes more time than downloading files that are already in the
new file format. Store E443xB file downloads to waveform memory and then transfer them
over to NVWFM memory to avoid the time required to convert these file types.

E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. This file
structure can be compared with the new style file format shown in Table 4-1 on page 148. If
new waveform files are created for the signal generator, use the new style format.

Storage Locations for ARB files

Waveforms can be stored to either volatile waveform memory or the non-volatile NVARB
memory. The signal generator supports the E443xB directory structure for waveform file
storage.

• For the E443xB style 14-bit waveforms the following storage locations are used:

1. For non-volatile, NVARB memory, the directory locations are /user/nvarbi/ and
/user/nvarbq.

2. For volatile waveform memory the directory locations are /user/arbi/ and
/user/arbq/.
Chapter 4 161

Downloading and Using Files
ARB Waveform Data Downloads
Loading files into the above directories does not actually store them in those directories.
Instead, these directories function as “pipes” to the format translator. The E443xB files are
translated into 16-bit versions (by appending 0’s to the least significant bit (LSB) and
interleaving the data) and stored in the regular waveform directories along with other new
style waveform files.

Although the you can see the E443xB file names in the /arbi, /arbq and nvarbi/nvarbq
directories, these names are really pointers. Refer to “Types of Arbitrary Waveform Generator
Memory” on page 148 for more information on the new style directory structure.

SCPI Commands

The signal generator automatically generates a marker file for downloaded E443xB waveform
files. The following commands will download E443xB waveform files into the signal generator.

Downloads to Waveform Memory:

Before downloading into volatile memory, turn off the ARB by pressing Mode > Dual ARB >
ARB Off On until Off is highlighted or send the SCPI command
[:SOURce]:RADio:ARB[:STATe] OFF.

:MMEM:DATA "ARBI:<file_name>", <I waveform data>
:MMEM:DATA "ARBQ:<file_name>", <Q waveform data>

These commands download E443xB IQ waveform data into the signal generator’s waveform
memory. The <I waveform data> and <Q waveform data> is the file format as described
above. The string variable <file_name> is the name of the waveform data file. The signal
generator will associate a marker file with the data file.

Downloads to Non-Volatile Memory:

:MMEM:DATA "NVARBI:<file_name>", <I waveform data>
:MMEM:DATA "NVARBQ:<file_name>", <Q waveform data>

These commands download E443xB IQ waveform data into the signal generator’s non-volatile
memory. The string variable <file_name> is the name of the data file. The signal generator
will associate a marker file with the data file when the file is moved to waveform memory
prior to playing.
Chapter 4162

Downloading and Using Files
ARB Waveform Data Downloads
Example Programs

Waveform Downloading Using HP BASIC for Windows The following program shows
you how to download waveforms using HP BASIC for Windows into volatile ARB memory.
This program is similar to the following program example as well as the previous examples.
The difference between BASIC for UNIX and BASIC for Windows is the way the formatting,
for the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 80 with:

80 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBI:testfile"", #"

and replace line 130 with:

130 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #"

First, the I waveform data is put into an array of integers called Iwfm_data and the Q
waveform data is put into an array of integers called Qwfm_data. The variable Nbytes is set
to equal the number of bytes in the I waveform data. This should be twice the number of
integers in Iwfm_data, since an integer is 2 bytes. Input integers must be between 0 and
16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses
the automatic EOL (End of Line) output. This allows multiple output commands to be
concatenated as if they were a single output. The “K” instructs HP BASIC to output the
following numbers or strings in the default format.

10 ! RE-SAVE "ARB_IQ_Win_file"
20 Num_points=200
30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)
40 DEG
50 FOR I=1 TO Num_points
60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)
70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)
80 NEXT I
90 PRINT "Data Generated"
100 Nbytes=2*Num_points
110 ASSIGN @Esg TO 719
120 !ASSIGN @Esgb TO 719;FORMAT MSB FIRST
130 Nbytes$=VAL$(Nbytes)
140 Ndigits=LEN(Nbytes$)
150 Ndigits$=VAL$(Ndigits)
160 OUTPUT @Esg USING "#,K";"MMEM:DATA ""ARBI:file_name_1"",#"
170 OUTPUT @Esg USING "#,K";Ndigits$
180 OUTPUT @Esg USING "#,K";Nbytes$
190 OUTPUT @Esgb;Iwfm_data(*)
200 OUTPUT @Esg;END
210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"
220 OUTPUT @Esg USING "#,K";Ndigits$
230 OUTPUT @Esg USING "#,K";Nbytes$
Chapter 4 163

Downloading and Using Files
ARB Waveform Data Downloads
240 OUTPUT @Esgb;Qwfm_data(*)
250 OUTPUT @Esg;END
260 ASSIGN @Esg TO *
270 ASSIGN @Esgb TO *
280 PRINT
290 PRINT "*END*"
300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 157 for program comments.
Chapter 4164

Downloading and Using Files
ARB Waveform Data Downloads
Waveform Downloading Using HP BASIC for UNIX The following program shows you
how to download waveforms using HP BASIC for UNIX. It is similar to the previous program
example. The difference is the way the formatting for the most significant bit (MSB) on lines
is handled.

First, the I waveform data is put into an array of integers called Iwfm_data and the
Q waveform data is put into an array of integers called Qwfm_data. The variable Nbytes is set
to equal the number of bytes in the I waveform data. This should be twice the number of
integers in Iwfm_data, since an integer is represented 2 bytes. Input integers must be
between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses
the automatic EOL (End of Line) output. This allows multiple output commands to be
concatenated as if they were a single output. The “K” instructs HP BASIC to output the
following numbers or strings in the default format.

10 ! RE-SAVE "ARB_IQ_file"
20 Num_points=200
30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)
40 DEG
50 FOR I=1 TO Num_points
60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)
70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)
80 NEXT I
90 PRINT "Data Generated"
100 Nbytes=2*Num_points
110 ASSIGN @Esg TO 719;FORMAT ON
120 ASSIGN @Esgb TO 719;FORMAT OFF
130 Nbytes$=VAL$(Nbytes)
140 Ndigits=LEN(Nbytes$)
150 Ndigits$=VAL$(Ndigits)
160 OUTPUT @Esg USING "#,K";"MMEM:DATA ""ARBI:file_name_1"",#"
170 OUTPUT @Esg USING "#,K";Ndigits$
180 OUTPUT @Esg USING "#,K";Nbytes$
190 OUTPUT @Esgb;Iwfm_data(*)
200 OUTPUT @Esg;END
210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"
220 OUTPUT @Esg USING "#,K";Ndigits$
230 OUTPUT @Esg USING "#,K";Nbytes$
240 OUTPUT @Esgb;Qwfm_data(*)
250 OUTPUT @Esg;END
260 ASSIGN @Esg TO *
270 ASSIGN @Esgb TO *
280 PRINT
290 PRINT "*END*"

300 END
Chapter 4 165

Downloading and Using Files
ARB Waveform Data Downloads
Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 159 for program comments.
Chapter 4166

Downloading and Using Files
User File Data Downloads
User File Data Downloads
The signal generator accepts user file data downloads. The files can be in either binary or bit
format, each consisting of 8-bit bytes. Both file types are stored in the signal generator’s
non-volatile memory.

• In binary format the data is in multiples of 8 bits; all 8 bits of a byte are taken as data and
used.

• In bit format the number of bits in the file is known and the non-data bits in the last byte
are discarded.

After downloading the files, they can be selected as the transmitting data source. This section
contains information on transferring user file data from a PC to the signal generator. It
explains how to download user files into the signal generator’s memory and modulate the
carrier signal with those files.

Framed and Unframed Data Types

There are two modes that can be used: framed mode and pattern mode.

• In framed mode, user file data is inserted into the data fields of an existing or user-defined,
custom framed digital modulation format, such as DECT, PHS, or TETRA.

The signal generator’s firmware generates the required framing structure and inserts user
file data into the data field(s) of the selected format. For more information, see “User Files
as Data Source for Framed Transmission” on page 170.

NOTE Unlike pattern RAM (PRAM) downloads to memory, user files contain “data
field” information only. The control data bits required for files downloaded
directly into PRAM are not required for user file data.

• In pattern mode, the file is modulated as a continuous, unframed stream of data, according
to the modulation type, symbol rate, and filtering associated with the selected format.

When a user file is selected as the data source, the signal generator’s firmware loads the
data into waveform memory, and sets the other seven control bits depending upon the
operating mode, regardless of whether framed or unframed transmission is selected. In
this manner, user files are mapped into waveform memory symbol-by-symbol; one symbol
equals one byte and occupies one address in memory.
Chapter 4 167

Downloading and Using Files
User File Data Downloads
Bit Memory and Binary Memory

User files can be downloaded to the bit memory or binary memory. Bit memory accepts data in
integer number of bits, up to the maximum available memory. The data length in bytes for
files downloaded into bit memory is equal to the number of significant bits plus seven, divided
by eight, then rounded down to the nearest integer. You must have enough bytes to contain
the bits you specify. If the number of bits is not a multiple of 8, the least significant bits of the
last byte will be ignored.

Bit memory provides more versatility and is the preferred memory for user file downloads.

Binary memory requires data formatted in 8-bit bytes. Files stored or downloaded to binary
memory are converted to bit files prior to editing in the bit file editor. Afterward, these
modified files from binary memory are stored in bit memory as bit files.

Data Requirements

1. Data must be in binary format.

SCPI specifies the data in 8-bit bytes.

NOTE Not all binary values are ASCII characters that can be printed. In fact, only
ASCII characters corresponding to decimal values 32 through 126 are
printable keyboard characters. Typically, the ASCII character corresponding
to an 8-bit pattern is not printable.

Because of this, the program written to download and upload user files must
correctly convert the binary data into 8-bit ASCII characters.

2. Bit length must be a multiple of the data-field length of the active format.

Also, the bit length of a user file must be a multiple of the data-field length of the active
format in order to completely fill the frame’s data field without leaving a remainder.

Remaining data is truncated by the signal generator’s firmware and is therefore not
present in the resulting waveform at the RF output.
Chapter 4168

Downloading and Using Files
User File Data Downloads
3. Bit length must be a multiple of 8 (binary downloads only).

SCPI specifies data in 8-bit bytes, and the binary memory stores data in 8-bit bytes.
If the length (in bits) of the original data pattern is not a multiple of 8, you may need to:

• add additional bits to complete the ASCII character,

• replicate the data pattern without discontinuity until the total length is a multiple of 8
bits,

• truncate and discard bits until you reach a string length that is a multiple of 8, or

• use a bit file and download to bit memory instead.

Data Limitations

Download size limitations are directly proportional to the available memory space and the
signal generator’s pattern RAM size (Option 001= 1 Mbyte, Option 002 = 4 Mbyte). To
determine the maximum user file size, you must consider the following:

• framing overhead

• pattern RAM size (1 Mbyte or 8 Mbyte)

• available memory

You may have to delete files from memory before downloading larger files.

Data Volatility

The signal generator provides two data storage areas: volatile waveform memory (WFM1) and
non-volatile memory (NVWFM). Data stored in volatile waveform memory cannot be
recovered if it is overwritten or if the power is cycled. Data stored in non-volatile memory,
however, remains until you delete the file. The Option 005 signal generator’s hard disk
provides 6 Gsamples of non-volatile storage. Signal generators without Option 005 provide 3
Msamples of non-volatile storage.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only. PRAM
equates to volatile waveform memory (WFM1).
Chapter 4 169

Downloading and Using Files
User File Data Downloads
User Files as Data Source for Framed Transmission

Specifying a user file as the data source for a framed transmission provides you with an easy
method to multiplex real data into internally generated TDMA framing. The user file will fill
the data fields of the active timeslot in the first frame, and continue to fill the same timeslot of
successive frames as long as there is more data in the file. This functionality allows a
communications system designer to download and modulate proprietary data sequences,
specific PN sequences, or simulate multiframe transmission, such as those specified by some
mobile communications protocols. As the example in the following figure shows, a GSM
multiframe transmission requires 26 frames for speech.

Figure 4-1 GSM Multiframe Transmission

When a user file is selected as the data source for a framed transmission, the signal
generator’s firmware loads PRAM with the framing protocol of the active TDMA format. For
all addresses corresponding to active (on) timeslots, burst bits are set to 1 and data bits are
set with the contents of the user file for the data fields of the timeslot. Other bits are set
according to the configuration selected. For inactive (off) timeslots, burst control bits are set to
0, and data is “unspecified.” Pattern reset is set to 1 for the last byte in PRAM, causing the
pattern to repeat after the last byte is read.
Chapter 4170

Downloading and Using Files
User File Data Downloads
NOTE The data in PRAM is static. Firmware writes to PRAM once for the
configuration selected and the hardware reads this data repeatedly. Firmware
overwrites the volatile PRAM memory to reflect the desired configuration only
when the data source or mode (digital communications format) is changed.

Take for example, transmitting a 228-bit user file for timeslot #1 (TS1) in a normal GSM
transmission. Per the standard, a GSM normal channel is 156.25-bits long, with two 57-bit
data fields (114 bits total per timeslot), and 42 bits for control or signalling purposes.

NOTE Compliant with the GSM standard, which specifies 156.25-bit timeslots, the
signal generator uses 156-bit timeslots and adds an extra guard bit every
fourth timeslot.

The seven remaining timeslots in the GSM frame are off. The user file will completely fill
timeslot #1 in two consecutive frames, and will then repeat. See Figure 4-2.

Figure 4-2 Mapping User File Data to a Single Timeslot
Chapter 4 171

Downloading and Using Files
User File Data Downloads
For this protocol configuration, the signal generator’s firmware loads PRAM with the bits
defined in the following table.

Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the Event 1
output at either the beginning of the frame, beginning of a specific timeslot, or at all timeslots.

Frame Timeslot PRAM
Address

Data Bits Burst Bits Pattern
Reset Bit

1 0 0 -155 0/1 (don’t care) 0 (off) 0 (off)

1 1 (on) 156 - 311 set by GSM standard (42 bits)
& first 114 bits of user file

1 (on) 0

1 2 312 - 467 0/1 (don’t care) 0 0

1 3 468 - 624 0/1 (don’t care) 0 0

1 4 625 - 780 0/1 (don’t care) 0 0

1 5 781 - 936 0/1 (don’t care) 0 0

1 6 937 - 1092 0/1 (don’t care) 0 0

1 7 1093 - 1249 0/1 (don’t care) 0 0

2 0 1250 - 1405 0/1 (don’t care) 0 0

2 1 (on) 1406 - 1561 set by GSM standard (42 bits)
& remaining bits of user file

1 (on) 0

2 2 through
6

1562 - 2342 0/1 (don’t care) 0 0 (off)

2 7 2343 - 2499 0/1 (don’t care) 0 0
(1 in
address
2499 only)
Chapter 4172

Downloading and Using Files
User File Data Downloads
Because timeslots are configured and enabled within the signal generator, a user file can be
individually assigned to one or more timeslots. A timeslot cannot have more than one data
source (PN sequence or user file) specified for it. The amount of user file data that can be
mapped into hardware memory depends on both the amount of PRAM available on the
baseband generator, and the number and size of each frame. The amount of PRAM required
for a framed transmission is calculated as follows:

PRAM required =
size of normal GSM timeslot × timeslots per frame × speech multiframe(TCH) × superframe

size of normal GSM timeslot = 156.25 bits

timeslots per frame = eight timeslots.

speech multiframe(TCH) = 26 frames

superframe = 51 speech mulitframes

For example, to calculate the number of bytes to generate a superframe for GSM:

= 156.25 × 8 × 26 × 51

= 1,657,5000 bytes.

Multiple User Files Selected as Data Sources for Different Timeslots

If two or more user files are selected for a framed transmission, the amount of PRAM required
is determined by the user file that generates the largest number of frames. In order to
generate continuously repeating data patterns, each user file must be long enough to
completely fill an integer number of timeslots. In addition, all user files must meet the
“multiple of 8 bits” and “enough PRAM memory” requirements to be correctly modulated.

For example, user file #1 contains 114 bits and fills the data fields of a normal GSM timeslot,
and user file #2 contains 148 bits for a custom GSM timeslot. In order to correctly transmit
these data patterns as continuously repeating user files without discontinuities, both data
patterns must be repeated four times. Therefore, user file #1 contains 456 bits, and user file 2
contains 592 bits. Each user file will then create exactly four frames in pattern RAM.

When two or more user files generate different numbers of complete frames, the user files will
repeat on different cycles. All user files will restart when the user file that generates the
largest number of frames repeats. For example, user file #1 needs four frames to completely
transmit its data, and user file #2 needs only three. User file #2 will repeat after the third
frame, and again when user file #1 repeats. See Figure 4-3. If these were integer multiples of
each other, both user files would be continuous, and user file #2 would repeat after two
frames.
Chapter 4 173

Downloading and Using Files
User File Data Downloads
Figure 4-3 Repeating Different Length User Files

Downloading User File Data

This section includes information that explains how to download user file data. It includes
data requirements and limitations, preliminary setup, SCPI commands and sample command
lines for both downloads to bit memory and binary memory.

Data Requirements and Limitations Summary

1. Data must be binary.

2. Bit length must be a multiple of the data-field length of the active TDMA format.

3. User file size is limited by the available memory.

4. When designing user files, you must consider the signal generator’s PRAM size
(8 Msample or 32 Msample), framing overhead, and available memory.

5. For downloads to binary memory, bit length must be a multiple of eight; SCPI specifies the
data in 8-bit bytes.

NOTE Not all binary values are ASCII characters that can be printed. Only ASCII
characters corresponding to decimal values 32 through 126 are printable
keyboard characters. Typically, the ASCII character corresponding to an 8-bit
pattern is not printable.

Because of this, the program written to download and upload user files must
correctly convert the binary data into 8-bit characters.
Chapter 4174

Downloading and Using Files
User File Data Downloads
Preliminary Setup

No preliminary setup is required for user file downloads.

Bit Memory Downloads

Bit memory accepts data in any integer number of bits, up to the maximum available memory.
The data length in bytes for files downloaded to bit memory is equal to the number of
significant bits plus seven, divided by eight, then rounded down to the nearest integer. Each
file has a 16-byte header associated with it.

You must have enough bytes to contain the bits you specify. If the number of bits is not a
multiple of 8, the least significant bits of the last byte will be ignored.

For example, specifying 14 bits of a16-bit string using the command :MEMory:DATA:BIT
"file_name", 14, #12Qz results in the last 2 bits being ignored. See the following figure.

Bit memory provides more versatility and is preferred for user file downloads.

SCPI Commands Send the following command to download the user file data into the
signal generator’s bit memory.

:MEMory:DATA:BIT "<file_name>", <bit count>, <datablock>

Example :MEMory:DATA:BIT "file_name", 16, #12Qz

file_name provides the user file name as it will appear in the signal generator’s binary
memory catalog

#1 defines the number of decimal digits to follow in “B”

2 denotes how many bytes of data are to follow

Qz the ASCII representation of the 16 bits of data that are downloaded to the
signal generator. This variable is represented by “C” in the sample command
line

010 0001 0111 1010 original user-defined data contains 2 bytes, 16 bits total

SCPI command sets bit count to 14; the last 2 bits are ignored

010 0001 0111 1010
Chapter 4 175

Downloading and Using Files
User File Data Downloads
Querying the Waveform Data Use the following SCPI command to query user file data
from binary memory:

:MEMory:DATA:BIT? "<file_name>"

The output format is the same as the input format.

Binary Memory Downloads

Binary memory requires data formatted in 8-bit bytes. Files stored or downloaded to binary
memory are converted to bit files prior to editing in the Bit File Editor. Afterward, these
modified files from binary memory are stored in bit memory as bit files.

Bit memory is the preferred for user file downloads.

SCPI Commands :MMEM:DATA "<file_name>", <datablock>

Send this command to download the user file data into the signal generator’s binary memory.
The variable <file_name> denotes the name that will be associated with the downloaded user
file stored in the signal generator.

Sample Command Line :MMEM:DATA "file_name", #ABC

file_name the name of the user file stored in the signal generator’s memory

#A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary user file data

Example :MMEM:DATA "file_name", #1912S407897

file_name provides the user file name as it will appear in the signal generator’s binary
memory catalog

#1 defines the number of decimal digits to follow in “B”

9 denotes how many bytes of data are to follow

12S407897 the ASCII representation of the data that is downloaded to the signal
generator. This variable is represented by C in the sample command line

Querying the Waveform Data Use the following SCPI command line to query user file
data from binary memory:

:MMEM:DATA? "file_name"

The output format is the same as the input format.
Chapter 4176

Downloading and Using Files
User File Data Downloads
Selecting Downloaded User Files as the Transmitted Data

Unframed Data

The following front panel key presses or remote commands will select the desired user file
from the catalog of user files as a continuous stream of unframed data for the active TDMA
format or for a custom modulation.

Via the front panel:

1. For a TDMA format, press Mode > Real Time TDMA > desired format > Data > User File.

For custom modulation, press Mode > Custom > Real Time I/Q Baseband > Data > User File.

2. Highlight the desired file in the catalog of user files.

3. Press Select File > desired format Off On or Custom Off On to On.

Via the remote interface:

The following commands activate the desired TDMA format:

[:SOURce]:RADio:<desired format>:DATA "BIT:<file_name>"

[:SOURce]:RADio:<desired format>[:STATe] On

The following commands activate the custom modulation format:

[:SOURce]:RADio:CUSTom:DATA "BIT:<file_name>"

[:SOURce]:RADio:CUSTom[:STATe] On

NOTE To select a user file from binary memory, send the same commands shown in
the above examples without BIT: preceding the file name. For example:

[:SOURce]:RADio:<desired format>:DATA "<file_name>"
Chapter 4 177

Downloading and Using Files
User File Data Downloads
Framed Data

The following front panel key presses or remote commands will select the desired user file
from the catalog of user files as a continuous stream of framed data for the active TDMA
format.

Via the front panel:

1. Press Mode > Real Time TDMA > desired format > Data Format Pattern Framed > Configure
Timeslots > Configure (current active timeslot) > Data > User File.

2. Highlight the desired file in the catalog of user files.

3. Press Select File

4. To activate the TDMA format, press Mode > Real Time TDMA > desired format > toggle the
format on.

Via the remote interface:

The following SCPI commands select and activate the user file as framed data for an NADC
uplink traffic channel in timeslot 1. The same command syntax is used for other data
transmission formats.

[:SOURce]:RADio:NADC:SLOT1:UTCHannel:DATA "BIT:<file_name>"

[:SOURce]:RADio:NADC[:STATe] On activates the NADC format.

Modulating and Activating the Carrier

The following front panel key presses or remote commands will modulate the carrier and turn
on the RF output.

Via the front panel:

1. Set the carrier frequency to 2.5 GHz.

2. Set the carrier amplitude −10.0 dBm.

3. Modulate the carrier.

4. Activate the RF output.

Via the remote interface:

[:SOURce]:FREQuency:FIXed 2.5GHZ

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -10.0DBM

:OUTPut:MODulation[:STATe] ON

:OUTPut[:STATe] ON
Chapter 4178

Downloading and Using Files
FIR Filter Coefficient Downloads
FIR Filter Coefficient Downloads
The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After
downloading the coefficients, these user-defined FIR filter coefficient values can be selected as
the filtering mechanism for the active digital communications standard.

Data Requirements

There are two requirements for user-defined FIR filter coefficient files:

1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point numbers.

2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s firmware. See
“Sample Command Line” on page 185.

Data Limitations

Filter lengths of up to 1024 taps (coefficients) are allowed. The oversample ratio (OSR) is the
number of filter taps per symbol. Oversample ratios from 1 through 32 are possible.

The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of 32.

The Real Time IQ Baseband FIR filter files are limited to 1024 taps, 64 symbols and a
16-times oversample ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symbols.

The sampling period (∆t) is equal to the inverse of the sampling rate (FS). The sampling rate
is equal to the symbol rate multiplied by the oversample ratio. For example, the GSM symbol
rate is 270.83 ksps. With an oversample ratio of 4, the sampling rate is 1083.32 kHz and ∆t
(inverse of FS) is 923.088 nsec.

Data Volatility

The signal generator provides two data storage areas: volatile waveform memory (WFM1) and
non-volatile memory (NVWFM). FIR filter coefficients stored in volatile waveform memory
cannot be recovered if overwritten or if the power is cycled. Coefficients stored in non-volatile
memory, however, remain until you delete the file. The Option 005 signal generator’s hard
disk provides 6 Gsamples of non-volatile storage. Signal generators without Option 005
provide 3 Msamples of non-volatile storage.
Chapter 4 179

Downloading and Using Files
FIR Filter Coefficient Downloads
Downloading FIR Filter Coefficient Data

Use the following SCPI command line to download FIR filter coefficients from the PC to the
signal generator’s FIR memory:

:MEMory:DATA:FIR "<file_name>",osr,coefficient{,coefficient}

Use the following SCPI command line to query list data from FIR memory:

:MEMory:DATA:FIR? "<file_name>"

Sample Command Line

The following SCPI command will download a typical set of FIR filter coefficient values and
name the file “FIR1”:

:MEMory:DATA:FIR "FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over sample ratio) and
coefficient values. The file is then represented with this name in the FIR
File catalog.

4 specifies the oversample ratio.

0,0,0,0,0,
0.000001,... represent FIR filter coefficients.

Selecting a Downloaded User FIR Filter as the Active Filter

FIR Filter Data for TDMA Format

The following front panel key presses or remote commands will select user FIR filter data as
the active filter for a TDMA modulation format.

Via the front panel:

1. Press Mode > Real Time TDMA > desired format > Modify Standard > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. Press Select File.

To activate the TDMA format press Mode > Real Time TDMA > desired format and toggle the
format on.
Chapter 4180

Downloading and Using Files
FIR Filter Coefficient Downloads
Via the remote interface:

[:SOURce]:RADio:<desired format>:FILTer "<file_name>"

This command selects the user FIR filter, specified by the file name, as the active filter for the
TDMA modulation format. After selecting the file, activate the TDMA format with the
following command:

[:SOURce]:RADio:<desired format>[:STATe] On

FIR Filter Data for Custom Modulation

The following front panel key presses or remote commands will select user FIR filter data as
the active filter for a custom modulation format.

Via the front panel:

1. Press Mode > Custom > Real Time IQ Baseband > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. Press Select File.

To activate the custom modulation, press Mode > Custom > Real Time IQ Baseband >
Custom Off On and toggle to on.

Via the remote interface:

[:SOURce]:RADio:CUSTom:FILTer "<file_name>"

This command selects the user FIR filter, specified by the file name, as the active filter for the
custom modulation format. After selecting the file, activate the TDMA format with the
following command:

[:SOURce]:RADio:CUSTom[:STATe] On

FIR Filter Data for CDMA and W-CDMA Modulation

The following front panel key presses or remote commands will select user FIR filter data as
the active filter for a CDMA modulation format. The process is very similar for W-CDMA.

Via the front panel:

1. Press Mode > CDMA > Arb IS-95A > CDMA Define > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. Press Select File.

To activate the CDMA modulation, press Mode > CDMA > Arb IS-95A > CDMA Off On to On.
Chapter 4 181

Downloading and Using Files
FIR Filter Coefficient Downloads
Via the remote interface:

[:SOURce]:RADio:<desired format>:ARB:FILTer "<file_name>"

This command selects the User FIR filter, specified by the file name, as the active filter for the
CDMA or W-CDMA modulation format. After selecting the file, activate the CDMA or
W-CDMA format with the following command:

[:SOURce]:RADio:<desired format>:ARB[:STATe] On

Modulating and Activating the Carrier

The following front panel key presses or remote commands will set the carrier frequency,
power, turn on the modulation, and turn on the RF output.

Via the front panel:

1. Press Frequency > 2.5 > GHz. Sets the signal generator frequency to 2.5 Ghz.

2. Press Amplitude > -10 > dBm. Sets the signal generator power to -10 dBm.

3. Press Mod On/Off until the display annunciator reads MOD ON.

4. Press RF On/Off until the display annunciator reads RF ON.

Via the remote interface:

[:SOURce]:FREQuency:FIXed 2.5GHZ sets the carrier frequency to 2.15 GHz.

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -10.0DBM sets the carrier
amplitude to -10.0 dBm.

:OUTPut:MODulation[:STATe] ON modulates the carrier.

:OUTPut[:STATe] ON activates the RF output.
Chapter 4182

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)
Downloads Directly into Pattern RAM (PRAM)
Typically, the signal generator’s firmware generates the required data and framing structure
and loads this data into Pattern RAM (PRAM). The data is read by the baseband generator,
which in turn is input to the IQ modulator. The signal generator can also accept data
downloads directly into PRAM from a computer. Programs such as MetLab or MathCad
can generate data which can be downloaded directly into PRAM in either a list format or a
block format.

Direct downloads to PRAM allow you complete control over bursting which is especially
helpful for designing experimental or proprietary framing schemes.

This section contains information that will help you transfer user-generated data from a
system controller to the signal generator’s PRAM. It explains how to download data directly
into PRAM and modulate the carrier signal with the data.

The signal generator’s baseband generator assembly builds modulation schemes by reading
data stored in PRAM and constructing framing protocols according to the data patterns
present. PRAM data can be manipulated (types of protocols changed, standard protocols
modified or customized, etc.) by the front panel interface or by remote-command interface.

NOTE Because there is no parsing involved, block data format downloads are
significantly faster than list format downloads.

Data Limitations

Total (data bits plus control bits) download size limitations are 8 Mbytes or 32 Mbytes with
Option 002. Each sample for PRAM uses 4 bytes of data.

A data pattern file containing 8 Mbits of modulation data must contain another 56 Mbits of
control information. A file of this size requires 8 Mbytes of memory; the largest amount of
modulation data for a waveform in the signal generator without Option 002.

Data Volatility

The signal generator provides two data storage areas: volatile waveform memory (WFM1) and
non-volatile memory (NVWFM). Data stored in volatile waveform memory cannot be
recovered if it is overwritten or if the power is cycled. Data stored in non-volatile memory,
however, remains until you delete the file. The Option 005 signal generator’s hard disk
provides 6 Gsamples of non-volatile storage. Signal generators without Option 005 provide
3 Msamples of non-volatile storage.
Chapter 4 183

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)
NOTE References to pattern RAM (PRAM) are for descriptive purposes only. PRAM
equates to volatile waveform memory (WFM1).

Downloading in List Format

NOTE Because of parsing, list data format downloads are significantly slower than
block format downloads.

Data Requirements and Limitations Summary

1. Data must be 8-bit, unsigned integers, from 0 to 255.

This requirement is necessary as list format downloads are parsed prior to being loaded
into PRAM.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information
(bits 1-7).

The signal generator processes data in 8-bit bytes. Each byte contains 1 bit of “data field”
information, and seven bits of control information associated with the data field bit. See
Table 4-1 for the required data and control bits.

Total (data bits plus control bits) download size limitations are 8 Mbytes or 32 Mbytes for
Option 002.

Preliminary Setup

It is important to set up the digital communications format before downloading data. This
allows the signal generator to define the modulation format, filter, and data clock. Activating
the digital communications format after the data has been downloaded to PRAM may corrupt
the downloaded data.

Via the front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.

To set up the custom modulation format, press Mode > Custom and toggle the format on.

To adjust symbol rate, filtering, or other parameters, press the appropriate softkey and adjust
the value.
Chapter 4184

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)
Via the remote interface:

For TDMA formats, send the following SCPI commands:

[:SOURce]:RADio:<desired format>[:STATe]:ON
[:SOURce]:RADio:<desired format>:BURSt[:STATe]:ON
[:SOURce]:BURSt:SOURce INT

For custom modulation, send:[:SOURce]:RADio:CUSTOm[:STATe]:ON

To adjust symbol rate, filtering, or other parameters, send the appropriate SCPI command.

SCPI Command to Download Data in List Format

:MEMory:DATA:PRAM:LIST <uint8>[,<uint8>,<...>]

This command downloads the list-formatted data directly into PRAM. The variable <uint8>
is any of the valid 8-bit, unsigned integer values between 0 and 255, as specified by Table 4-1.
Note that each value corresponds to a unique byte/address in PRAM.

Sample Command Line

For example, to burst a FIX4 data pattern of “1100” five times, then turn the burst off for 32
data periods (assuming a 1-bit/symbol modulation format), the command is:

:MEMory:DATA:PRAM:LIST 85,21,20,20,21,21,20,20,21,21,20,20,21,21,20,20,21,
21,20,20,16,
16,16,16,16,16,16,16,16,16,16,144

21 signifies data=1, burst = on (1)

20 signifies data=0, burst = on (1)

16 signifies data=unspecified, burst = off (0)

85 enables event 1 trigger signifying the beginning of the data pattern

144 signifies data=unspecified, burst = off (0), pattern repeat = on (1)

Querying the Waveform Data

Use the following SCPI command line to determine whether there is a user-defined pattern in
the PRAM:

:MEMory:DATA:PRAM?
Chapter 4 185

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)
Downloading in Block Format

NOTE Because there is no parsing, block data format downloads are faster than list
format downloads.

Data Requirements and Limitations Summary

1. Data must be in binary form.

This requirement is necessary as the baseband generator reads binary data from the data
generator.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information
(bits 1-7).

The signal generator processes data in 8-bit bytes. Each byte contains 1 bit of “data field”
information, and seven bits of control information associated with the data field bit. See
Table 4-1 for the required data and control bits.

Total (data bits plus control bits) download size limitations are 8 Mbytes or 32 Mbytes for
Option 002.

Because a waveform containing 16 Mbit of data for subsequent modulation must also contain
another 112 Mbits of control information, a file this size requires a signal generator with
Option 002, which provides 32 Mbytes of pattern RAM. The largest amount of modulation
data for a waveform in an Option 001 signal generator is approximately 8 Mbits, which leaves
enough room for the required 56 Mbits of control bits.

Preliminary Setup

Before downloading data, set up the digital communications format to enable the signal
generator to define the modulation format, filter, and data clock. Activating the digital
communications format after data downloads to PRAM can corrupt the data.

Via the front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.

To set up a custom modulation format, press Mode > Custom and toggle the format on.

To adjust symbol rate, filtering, or other parameters, press the appropriate softkey and adjust
the value.
Chapter 4186

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)
Via the remote interface:

For TDMA formats, send the following SCPI command:

[:SOURce]:RADio:<desired format>[:STATe]:ON

For custom modulation, send:[:SOURce]:RADio:CUSTom[:STATe]:ON

To adjust symbol rate, filtering, or other parameters, send the appropriate SCPI command.

SCPI Command to Download Data in Block Format

:MEMory:DATA:PRAM:BLOCk <datablock>

This command downloads the block-formatted data directly into pattern RAM.

Sample Command Line

A sample command line:

:MEMory:DATA:PRAM:BLOCk #ABC

#A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary user file data

Example 1

:MEMory:DATA:PRAM:BLOCk #1912S407897

#1 defines the number of decimal digits to follow in “B”.

9 denotes how many bytes of data are to follow.

12S407897 is the ASCII representation of the data downloaded to the signal generator.
This variable is represented by C in the sample command line.

NOTE Not all binary values can be printed as ASCII characters. In fact, only ASCII
characters corresponding to decimal values 32 to 126 are printable keyboard
characters. The above example was chosen for simplicity. Typically, the binary
value corresponding to your 8-bit pattern is not printable.

Therefore, the program written to download and upload user files must
correctly convert between binary and the visible representation of the data
sequence.
Chapter 4 187

Downloading and Using Files
Downloads Directly into Pattern RAM (PRAM)
Modulating and Activating the Carrier

The following section explains how to modulate the carrier with the data downloaded to
PRAM, first from the front panel interface, and then via remote SCPI commands.

Via the Front Panel

1. Set the carrier frequency to 2.5 Ghz (Frequency > 2.5 > GHz).

2. Set the carrier amplitude –10.0 dBm (Amplitude > –10 > dBm).

3. Turn modulation on (press Mod On/Off until the display annunciator reads MOD ON).

4. Activate the RF output (press RF On/Off until the display annunciator reads RF ON).

Via the Remote Interface

Send the following SCPI commands to modulate and activate the carrier.

1. Set the carrier frequency to 2.5 Ghz:

[:SOURce]:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to –10.0 dBm:

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -10.0DBM

3. Activate the modulation:

:OUTPut:MODulation[:STATe] ON

4. Activate the RF output:

:OUTPut[:STATe] ON

Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an
oscilloscope. There is approximately a 12-symbol delay between a state change in the burst bit
and the corresponding effect at the RF out. This delay varies with symbol rate and filter
settings and requires compensation to advance the burst bit in the downloaded PRAM file.
Chapter 4188

Downloading and Using Files
Data Transfer Troubleshooting
Data Transfer Troubleshooting
This section is divided by the following data transfer method:

“Direct PRAM Download Problems” on page 189

“User File Download Problems” on page 191

“User FIR Filter Coefficient File Download Problems” on page 195

“ARB Waveform Data Download Problems” on page 196

Each section contains the following troubleshooting information:

• a list of symptoms and possible causes of typical problems encountered while downloading
data to the signal generator

• reminders regarding special considerations, file requirements, and data limitations

• tips on creating data, transferring data, data application and memory usage

Direct PRAM Download Problems
Table 4-3 Direct-to-PRAM Download Trouble - Symptoms and Causes

Symptom Possible Cause

The transmitted pattern is
interspersed with random,
unwanted data.

Pattern reset bit not set.

Insure that the pattern reset bit (bit 7, value 128) is set on
the last byte of your downloaded data.

ERROR -223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by
ordering the appropriate hardware option.
Chapter 4 189

Downloading and Using Files
Data Transfer Troubleshooting
Data Requirement Reminders

To avoid direct-download-to-PRAM problems, the following conditions must be met:

1. The data must be in binary form.

2. For every bit of modulation data (bit 0), you must provide seven bits of control information
(bits 1-7).

Bit Function Value Comments

0 Data 0/1 This bit is the data to be modulated. This bit is
“unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0.

2 Burst 0/1 Set to 1 = RF on.
Set to 0 = RF off.
For non-bursted, non-TDMA systems, this bit is set to 1
for all memory locations, leaving the RF output on
continuously. For framed data, this bit is set to 1 for on
timeslots and 0 for off timeslots

3 Reserved 0 Always 0.

4 Reserved 1 Always 1.

5 Reserved 0 Always 0.

6 Event 1 Output 0/1 Setting this bit to 1 causes a level transition at the
EVENT 1 BNC connector. This can be used for many
functions. For example, as a marker output to trigger
external hardware when the data pattern has restarted,
or to create a data-synchronous pulse train by toggling
this bit in alternate addresses.

7 Pattern Reset 0/1 Set to 0 = continue to next sequential memory address.
Set to 1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last address of
PRAM. For the last address (byte) of PRAM, it is set to 1
to restart the pattern.
Chapter 4190

Downloading and Using Files
Data Transfer Troubleshooting
User File Download Problems

Data Requirement Reminders

To avoid user file data download problems, the following conditions must be met:

1. The user file selected must entirely fill the data field of each timeslot.

2. For binary memory downloads, the user file must be a multiple of 8 bits, so that it can be
represented in ASCII characters.

3. Available PRAM must be large enough to support both the data field bits and the framing
bits.

Table 4-4 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

No data modulated

Not enough data to fill a single timeslot.

If a user file does not completely fill a single timeslot, the
firmware will not load any data into the timeslot. For
example, if a timeslot’s data field should contain 114 bits,
and only 100 bits are provided in the user file, no data will
be loaded into the data field of the timeslot. Therefore, no
data will be detected at the RF output.

At RF output,
some data modulated,
some data missing

Data does not completely fill an integer number of
timeslots.

If a user file fills the data fields of more than one timeslot in
a continuously repeating framed transmission, the user file
will be restarted after the last timeslot containing
completely filled data fields. For example, if the user file
contains enough data to fill the data fields of 3.5 timeslots,
firmware will load 3 timeslots with data and restart the
user file after the third timeslot. The last 0.5 timeslot worth
of data will never be modulated.
Chapter 4 191

Downloading and Using Files
Data Transfer Troubleshooting
Requirement for Continuous User File Data Transmission

“Full Data Field” Requirements If a user file does not completely fill a single timeslot, the
firmware does not load any data into that timeslot. For example, if a timeslot’s data field
should contain 114 bits, and only 100 bits are provided in the user file, no data is loaded into
the timeslot data field, and no data is transmitted at the RF output.

To solve this problem, add bits to the user file until it completely fills the data field of the
active protocol.

“Integer Number of Timeslots” Requirement for Multiple-Timeslots If a user file fills
the data fields of more than one timeslot in a continuously repeating framed transmission, the
user file is restarted after the last timeslot containing completely filled data fields. For
example, if the user file contains enough data to fill the data fields of 3.5 timeslots, firmware
loads 3 timeslots with data and restart the user file after the third timeslot. The last 0.5
timeslot worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer
number of timeslots

“Multiple-of-8-Bits” Requirement For downloads to binary memory, user file data must be
downloaded in multiples of 8 bits, since SCPI specifies data in 8-bit bytes. Therefore, if the
original data pattern’s length is not a multiple of 8, you may need to:

• Add additional bits to complete the ASCII character

• replicate the data pattern to generate a continuously repeating pattern with no
discontinuity

• truncate the remaining bits

NOTE The “multiple-of-8-bits” data length requirement (for binary memory
downloads) is in addition to the requirement of completely filling the data field
of an integer number of timeslots.

The following method can be used to compute the number of data pattern repetitions required
in order to form a continuous data stream.
Chapter 4192

Downloading and Using Files
Data Transfer Troubleshooting
In this example, a modified PN9, 511-bit data pattern is to be applied as the data source for a
114-bit data field in a GSM Normal timeslot.

Set up a spreadsheet containing:

A = number of repetitions of the original data pattern
B = user file length = number of repetitions × original data pattern length
C = Number of characters = user file length ÷ 8 (8 bits-per-character)
D = number of frames = user file length ÷ timeslot data field size (114)
E = total required PRAM = number of frames × number of bits-per-frame (1250 for GSM)

The first row where both columns C and D are integers (the shaded row at the bottom of the
table) is the minimum number of repetitions required to transmit the user file without
discontinuity. In this example, in order to correctly generate the modified PN9 and download
it to a user file, the user file must contain 456 repetitions of the 511-bit pattern. 233,016 total
bits will be downloaded to the signal generator, for a total of 29,127 characters.

A B C D E

Number
of reps

Data
Pattern
Length ×
Repetitions

Number of
Characters
(B ÷ 8)

Number of frames needed to
 end on a timeslot boundary
(B ÷ timeslot data field size)

Total PRAM
required
(D × number of
bits-per-frame)

1 511 63.88 4.48 5,603.07

2 1,022 127.75 8.96 11,206.14

3 1,533 191.63 13.45 16,809.21

4 2,044 255.50 17.93 22,412.28

5 2,555 319.38 22.41 28,015.35

6 3,066 383.25 26.89 33,618.42

7 3,577 447.13 31.38 39,221.49

8 4,088 511 35.86 44,824.56

9 4,599 574.88 40.34 50,427.63

...

455 232,505 29,063.13 2,039.52 2,549,396.92

456 233.016 29,127 2,044 2,555,000
Chapter 4 193

Downloading and Using Files
Data Transfer Troubleshooting
“Pattern RAM Memory Depth” Requirement It is possible to exhaust the available
PRAM with a large, continuous user file transmitted across a large number of frames.

In the previous example, selecting the 233,016-bit user file as the data source for the
GSM Normal timeslot will cause the firmware to compute 2,044 frames of data, filling
2,555,000 bytes of PRAM depth. Option 002 (4 Mbyte PRAM) is required for this
configuration. Trying to load this data on an Option 001 (1 Mbyte PRAM) signal generator
will cause an error, because there is not enough PRAM to hold the required data.

If PN11 was used instead of PN9, 456 repetitions of the data pattern would require a
933,432-bit user file, requiring 8,188 frames and 10,235,000 bytes of PRAM. Because the size
of this data exceeds the limits of Option 002, you would need to supply a file this size via the
external DATA connector.

Using Externally Generated, Real-Time Data for Large Files The data fields
absolutely must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the
front-panel DATA, DATA CLOCK, and SYMBOL SYNC connectors. This data can be
continuously transmitted, or can be framed by supplying a data-synchronous burst pulse to
the EXT1 INPUT connector on the front panel. Additionally, the external data can be
multiplexed into internally generated framing

The the data fields absolutely must be continuous data streams, and the size of the data
exceeds the available PRAM, real-time data and synchronization can be supplied by an
external data source to the front-panel DATA, DATA CLOCK, and SYMBOL SYNC
connectors. This data can be continuously transmitted, or can be framed by supplying a
data-synchronous burst pulse to the EXT1 INPUT connector on the front panel. Additionally,
the external data can be multiplexed into the internally generated framing
Chapter 4194

Downloading and Using Files
Data Transfer Troubleshooting
User FIR Filter Coefficient File Download Problems

Data Requirement Reminders

To avoid user FIR filter coefficient data download problems, the following conditions must be
met:

1. Data must be in ASCII format.

2. Downloads must be in list format.

3. Filters containing more symbols than the hardware allows (64 for Real Time and 512 for
ARB) will not be selectable for that configuration.

Table 4-5 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

ERROR -321, Out of
memory

There is not enough memory available for the FIR
coefficient file being downloaded.

To solve the problem, either reduce the file size of the FIR
file or delete unnecessary files from memory.

ERROR -223, Too much data

User FIR filter has too many symbols.

Real Time cannot use a filter that has more than 64
symbols (512 symbols maximum for ARB). You may have
specified an incorrect oversample ratio in the filter table
editor.
Chapter 4 195

Downloading and Using Files
Data Transfer Troubleshooting
ARB Waveform Data Download Problems

Data Requirement Reminders

To avoid IQ waveform data download problems, the following six conditions must be met:

1. Data must be in signed, 2’s complement (binary) format.

2. Data must ordered MSB first to LSB last. Each IQ sample has 4 bytes of data.

3. Input integers must be between –32768 and 32767.

4. Each I and Q waveform file must have at least 60 samples.

Table 4-6 IQ Waveform Data Download Trouble - Symptoms and Causes

Symptom Possible Cause

ERROR 224, Text file busy.

Attempting to download a waveform that has the same name as
the waveform currently being played by the signal generator.

To solve the problem, either change the name of the waveform
being downloaded or turn off the ARB.

ERROR -321, Out of memory.

There is not enough space in the ARB memory for the waveform
file being downloaded.

To solve the problem, either reduce the file size of the waveform
file or delete unnecessary files from ARB memory.

No RF Output If no user marker file is provided then a default marker file
containing all zeros is created. If the signal generator’s Mrk 2 to
RF Blank softkey is set to on, the RF will be blanked. Go to MODE
> Dual ARB > ARB Setup and toggle Mrk 2 to RF to off.
Chapter 4196

Index
A
abort function, 9
address

GPIB address, 7
IP address, 15

Agilent
BASIC, 35
SICL, 34
VISA, 34

Agilent BASIC, 4
Agilent VISA, 7, 14, 27
ARB memory vs. NVARB memory, 148
ARB waveform file downloads, 151, 161

example programs, 155, 163
playing a downloaded waveform, 160
SCPI commands, 153, 162

ascii, 12

B
BASIC

ABORT, 9
CLEAR, 12
ENTER, 13
LOCAL, 11
LOCAL LOCKOUT, 10
OUTPUT, 12
REMOTE, 10

binary memory and bit memory, 168
binary memory catalog user file downloads,

176
binary memory vs. bit memory, 168
bit memory and binary memory, 168
bit memory catalog user file downloads, 175
bit status, how and what to monitor, 106
bit values, 105
bit-value and output power, ARB waveforms,

148

C
C/C++, 4

include files, 33
clear command, 12
clear function, 12
CLS command, 110
command prompt, 16, 91
commands, 9, 10, 11, 12, 13
computer interface, 3
condition registers

description, 115
controller, 8

D
data limitations

ARB waveform downloads, 150
FIR filter downloads, 179
PRAM downloads, 183
user file downloads, 169

data questionable filters
BERT transition, 142
calibration transition, 139
frequency transition, 133
modulation transition, 136
power transition, 130
transition, 127

data questionable groups
BERT status, 141
calibration status, 138
frequency status, 132
modulation status, 135
power status, 129
status, 125

data questionable registers
BERT condition, 142
BERT event, 143
BERT event enable, 143
calibration condition, 139
calibration event, 139
calibration event enable, 140
condition, 126
event, 127
event enable, 128
frequency condition, 133
frequency event, 134
frequency event enable, 134
modulation condition, 136
modulation event, 137
modulation event enable, 137
power condition, 130
power event, 131
power event enable, 131

data requirements
ARB waveform downloads, 150
FIR filter downloads, 179
user file downloads, 168

data transfer, 3
data volatility

FIR filter downloads, 179
PRAM downloads, 183
user file downloads, 169

developing programs, 32, 33
 197

Index
DOS prompt, 21
download libraries, 7, 14
downloading

ARB waveform data, 147
FIR filter coefficient data, 179
user files, 167

downloading files, 145

E
echo, lack of, 24
EnableRemote, 10
enter function, 13
errors, 17
ESE commands, 110
event enable register

description, 115
event registers

description, 115

F
file transfer, 25
files, 33
filters

See also transition filters
negative transition, description, 115
positive transition, description, 115

firmware status, monitoring, 106
FTP, 25

G
Getting Started Wizard, 8
GPIB, 3

address, 7
cables, 8
card installation, 5
configuration, 7
controller, 8
interface, 5
IO libraries, 7
listener, 8
on UNIX, 6
overview, 5
program examples, 34
SCPI commands, 9
talker, 8
verifying operation, 8

H
hardware status, monitoring, 106

hostname, 15
HyperTerminal, 29

I
iabort, 9
ibloc, 11
ibstop, 9
ibwrt, 13
iclear, 12
IEEE standard, 5
igpibllo, 11
instrument status, monitoring, 102
interface, 3
interface cards, 5
IO libraries, 2, 3, 5, 7, 9, 27
IP address, 15
iremote, 10

J
Java

example, 91

L
LabView, 4
LAN, 3

configuration, 15
interface, 3
IO libraries, 14
overview, 14
program examples, 64
sockets, 64
sockets LAN, 14
TELNET, 21
verifying operation, 16
VXI-11, 14, 64, 65

languages, 32
libraries, 2, 3, 7, 9, 14, 27
listener, 8
local echo, lack of, 24
local function, 11
local lockout function, 10

M
manual operation, 10
MS-DOS Command Prompt, 16

N
National Instruments

NI-488.2, 34
198

Index
National Instruments (continued)
NI-488.2 include files, 33
VISA, 34

National Instruments VISA, 7, 14, 27
negative transition filter, description, 115
NI-488.2, 7, 14, 27

EnableRemote, 10
iblcr, 12
ibloc, 11
ibrd, 13
ibstop, 9
ibwrt, 13
SetRWLS, 11

NVARB memory vs. ARB memory, 148

O
OPC commands, 110
output command, 12
output function, 12

P
pattern RAM, 183
PCI-GPIB, 34
PERL

example, 89
personal computer, PC, 5
ping program, 16
polling method (status registers), 107
ports, 69
positive transition filter, description, 115
PRAM, 183
PRAM downloads

in block format, 186
preliminary setup, 186
sample commands line, 187
SCPI commands, 187

in list format, 184, 185
data query SCPI command, 185
preliminary setup, 184
SCPI commands, 185

modulating and activating the carrier, 188
problems

ARB waveform downloads, 196
PRAM downloads, 189
user file downloads, 191
user FIR filter downloads, 195

programming languages, 32

R
register system overview, 102
registers

See also status registers
condition, description, 115
data questionable BERT condition, 142
data questionable BERT event, 143
data questionable BERT event enable, 143
data questionable calibration condition, 139
data questionable calibration event, 139
data questionable calibration event enable,

140
data questionable condition, 126
data questionable event, 127
data questionable event enable, 128
data questionable frequency condition, 133
data questionable frequency event, 134
data questionable frequency event enable,

134
data questionable modulation condition,

136
data questionable modulation event, 137
data questionable modulation event enable,

137
data questionable power condition, 130
data questionable power event, 131
data questionable power event enable, 131
in status groups (descriptions), 115
overall system, 103, 104
standard event status, 117
standard event status enable, 118
standard operation condition, 120, 123
standard operation event, 121, 123
standard operation event enable, 121, 124
status byte, 113

remote
annunciator, 94

remote function, 10
remote interface, 2

GPIB, 6
RS-232, 27

RS-232, 3
address, 94
baud rate, 28
cable, 28
configuration, 28
echo, 28
format parameters, 30
interface, 28
 199

Index
RS-232 (continued)
IO libraries, 27
overview, 27
program examples, 93
settings, baud rate, 94
verifying operation, 29

S
sample command line, 185
SCPI, 4, 5
SCPI commands, 9

ARB waveform file downloads, 153, 162
example programs

HP BASIC for UNIX, 158, 165

HP BASIC for Windows, 155,
163

playing a downloaded waveform, 160
for status registers

IEEE 488.2 common commands, 110
PRAM downloads

in block format, 187
preliminary setup, 187

sample command line, 187
in list format, 185

preliminary setup, 184

querying the PRAM data, 185

sample command line, 185
modulating and activating the carrier, 188

user file downloads, 175, 176
querying the PRAM data, 176
sample command line, 176

user FIR file downloads
sample command line, 180

SCPI register model, 102
service request method (status registers), 107
service request method, using, 108
SetRWLS, 11
SICL, 7, 14, 27, 34

iabort, 9
iclear, 12
igpibllo, 11
iprintf, 13
iremote, 10
iscanf, 13

signal generator
monitoring status, 102

sockets
example, 69, 72
Java, 91
LAN, 64, 69
PERL, 89
UNIX, 69
Windows, 70

sockets LAN, 20
SRE commands, 110
SRQ command, 108
SRQ method (status registers), 107
standard event status enable register, 118
standard event status group, 116
standard event status register, 117
standard operation condition register, 120,

123
standard operation event enable register,

121, 124
standard operation event register, 121, 123
standard operation status group, 119, 122
standard operation transition filters, 121, 123
status byte

overall register system, 103, 104
status byte group, 112
status byte register, 113
status groups

data questionable, 125
data questionable BERT, 141
data questionable calibration, 138
data questionable frequency, 132
data questionable modulation, 135
data questionable power, 129
registers, 115
standard event, 116
standard operation, 119, 122
status byte, 112

status registers
See also registers
accessing information, 106
bit values, 105
hierarchy, 102
how and what to monitor, 106
in status groups, 115
overall system, 103, 104
programming, 101
SCPI commands, 110
SCPI model, 102
setting and querying, 110
standard event, 117
standard event status enable, 118
system overview, 102
200

Index
status registers (continued)
using, 105

STB command, 110
system requirements, 32

T
talker, 8
TCP/IP, 20
TELNET

example, 24
UNIX, 23
using, 21

transition filters
See also filters
data questionable, 127
data questionable BERT, 142
data questionable calibration, 139
data questionable frequency, 133
data questionable modulation, 136
data questionable power, 130
description, 115
standard operation, 121, 123

troubleshooting
ARB waveform downloads, 196
ping response errors, 17
PRAM downloads, 189
RS-232, 30
user file downloads, 191
user FIR filter downloads, 195

U
UNIX, 5
UNIX TELNET command, 24
user file downloads, 174

modulating and activating the carrier, 178
selecting the user file as the data source,

177
user files

as data sources for frames transmissions,
170

in framed mode, 167
in pattern mode, 167
multiple user files as data sources, 173

user FIR file downloads, 180
selecting a downloaded user FIR file, 180

using files, 145

V
viPrintf, 13

VISA, 7, 14, 27
include files, 33
library, 34
scanf, 13
viClear, 12
viPrintf, 13
viTerminate, 9

VISA Assistant, 8
Visual Basic, 4
viTerminate, 9
VXI-11, 18, 64

programming, 65
with SICL, 65
with VISA, 66

W
waveform

downloading
using HP BASIC for UNIX, 158, 165
using HP BASIC for Windows, 156, 163
 201

Index
202

	Return to Main Menu
	Programming Guide
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	I/O Libraries
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting I/O Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function

	Using LAN
	1. Selecting I/O Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using TELNET LAN
	Using FTP

	Using RS-232
	1. Selecting I/O Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	Interface Check Using NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Examples
	Before Using the Examples
	VXI-11 Programing
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	4 Downloading and Using Files
	Introduction
	ARB Waveform Data Downloads
	Bit-value and Output Power
	Types of Arbitrary Waveform Generator Memory
	Data Requirements
	File Structure
	Downloading Waveforms
	Playing a Downloaded Waveform
	Downloading E443xB Signal Generator Files

	User File Data Downloads
	Framed and Unframed Data Types
	Data Requirements
	Data Limitations
	Data Volatility
	User Files as Data Source for Framed Transmission
	Multiple User Files Selected as Data Sources for Different Timeslots
	Downloading User File Data
	Selecting Downloaded User Files as�the�Transmitted�Data
	Modulating and Activating the Carrier

	FIR Filter Coefficient Downloads
	Data Requirements
	Data Limitations
	Data Volatility
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active�Filter

	Downloads Directly into Pattern RAM (PRAM)
	Data Limitations
	Data Volatility
	Downloading in List Format
	Downloading in Block Format
	Modulating and Activating the Carrier
	Viewing the PRAM Waveform

	Data Transfer Troubleshooting
	Direct PRAM Download Problems
	User File Download Problems
	User FIR Filter Coefficient File Download Problems
	ARB Waveform Data Download Problems

	Index

